
Introduction to Functional Architectures

A commit-by-commit dissection of a real application

Anatolii Kmetiuk

Copyright c© 2017 Anatolii Kmetiuk

FUNCTORHUB.COM

All rights reserved. This book or any portion thereof may not be reproduced or used in any
manner whatsoever without the express written permission of the author except for the use of brief
quotations in a book review.

The template used to create this book is credited to www.latextemplates.com.

Contents

1 Preface . 7

1.1 Why this book was written 7
1.2 Structure 8
1.3 Conventions 9
1.3.1 Remarks . 9
1.3.2 Code Listings . 9

1.4 Obtaining and working with the sources 10
1.5 How to read this book 11
1.5.1 Philosophy . 11
1.5.2 Algorithm . 11

I Inception

2 Functional Streamer, the Application . 15

2.1 Motivation 15
2.2 Solution 15
2.3 Setting 15

3 DSL . 19

3.1 Motivation 19
3.2 Solution 19
3.3 Implementation 20
3.3.1 Types . 20
3.3.2 High-level API . 20

3.4 Conclusion 21

II Server Side

4 Implicit Conversions . 25

4.1 Refactoring: Modularisation 25
4.2 Motivation 25
4.3 Solution 25
4.4 Implementation 26
4.5 Conclusion 26

5 Rich Wrappers . 27

5.1 Motivation 27
5.1.1 Two implicit conversions in scope . 28
5.1.2 Implicits can be dangerous . 28

5.2 Solution 28
5.2.1 Essence . 28
5.2.2 Details . 28
5.2.3 Application . 28

5.3 Implementation 29
5.4 Conclusion 29

6 Refactoring: Error Handling . 31

6.1 Responding with Strings 31
6.2 Error Handling 32

7 Purity. Functional Onion Architecture. 35

7.1 Motivation 35
7.1.1 Bugs . 35
7.1.2 Problems . 36

7.2 Solution 37
7.2.1 Purity . 37
7.2.2 Functional Onion Architecture . 38
7.2.3 Putting it all together . 38

7.3 Implementation 39
7.3.1 Handlers . 39
7.3.2 Processing . 39
7.3.3 Response methods . 40

8 Type Classes . 41

8.1 Motivation 41
8.2 Solution 42
8.2.1 Without Rich Wrappers . 42
8.2.2 With Rich Wrappers . 42

8.2.3 Putting it all together: the Type class pattern . 43

8.3 Implementation 43

8.4 Implicit Scope 44

8.5 Conclusion 45

III Client Side

9 Ajax with Circe . 49

9.1 Protocol 49

9.2 Client side 50

9.3 Server side 51

10 Effect Types . 53

10.1 Motivation 53
10.1.1 Side effects revisited . 53
10.1.2 Encapsulating side effects with higher-kinded types . 54

10.2 Intuition 54
10.2.1 What is F[A]? . 54
10.2.2 What is A => F[B]? . 54
10.2.3 What about the Onion architecture? . 54

10.3 Conclusion 55

11 Monads . 57

11.1 Motivation 57
11.1.1 Problem: Concrete . 57
11.1.2 Problem: General . 58

11.2 Solution 58
11.2.1 flatMap . 58
11.2.2 Monads . 58
11.2.3 Monad type class . 59

11.3 Intuition 59
11.3.1 What is F[A] => F[B]? . 59

11.4 Implementation 59
11.4.1 Naive . 59
11.4.2 Monadic flow . 60

12 Cats . 61

12.1 Motivation 61

12.2 Solution 62
12.2.1 Cats - the library for Functional Programming . 62
12.2.2 Functor . 62
12.2.3 Bifunctor . 62

IV Video Streaming

13 More Onions . 67

14 Browsing the Directories . 71

14.1 Basics 71
14.2 Client Side 72
14.3 Directory Rendering 74
14.3.1 Contents . 74
14.3.2 Parent . 74

15 Applicative . 75

15.1 Motivation 75
15.1.1 Concrete . 75
15.1.2 General . 75

15.2 Solution 75
15.2.1 Applicative . 75
15.2.2 Technical stuff . 76

15.3 Intuition 76
15.3.1 What does it mean to zip F[A] and F[B]? . 76

15.4 Implementation 76
15.4.1 Inside ap . 78
15.4.2 Application . 78

15.5 Conclusion 79

16 Traverse . 81

16.1 Motivation 81
16.2 Solution 81
16.3 Implementation 82

17 Browsing the Videos . 83

18 Monad Transformers . 85

18.1 Motivation 85
18.2 Solution 86
18.2.1 Hack . 86
18.2.2 Problem in-depth . 86
18.2.3 Monad Transformers . 87
18.2.4 Lifting to monad transformers . 87

18.3 Implementation 87

19 Streaming the Videos . 89

20 Afterword . 91

1. Preface

1.1 Why this book was written

Whenever a concept sticks around in an applied discipline, it means it is useful in solving some
particular problem. Hence the best way to learn applied disciplines is by focusing on the problems
and studying solutions to them only once the problems are fully understood. Unfortunately, there is
not many problem-focused learning materials in the functional programming world.

For example, I often see discussions about "what a Monad is", but much more rare people
discuss "what problem a Monad solves". This is also true for many functional programming libraries,
which in the Scala world are currently assembled under the Typelevel1 umbrella. Although this
organization aims2 to remove barriers for the newcomers to enter purely functional programming
world, I still see many confusion about "why need Cats" or "what Shapeless is good for".

This book aims to solve this problem of confusion. Growing from the belief that one must study
applied concepts starting from the problems they solve, this book follows the development of an
application designed according to the functional style. Here is how this book is different from other
resources:

• The application development is followed commit-by-commit, starting from the very first
one. Every chapter has one or more commits it discusses. Any commit introduces a certain
change to the code base, and this book analyzes why and how these changes were made.

• The application in question and its development are real. In the sense that they were not
developed for the sake of this book only. The application is a video streaming server - so that
you can launch a server and access the file system of the host computer via browser over the
local network. You can play any mp4 file via HTML5 player over the local network. The
motivation to develop this application was precisely my own need to stream videos hosted on
my computer to my tabled, and the absence of satisfactory solutions to the problem (either
too slow, or proprietary, or some other issue).

• Since the application is "real", there will be unintended bugs and typos in the code. But
instead of editing them out with a rebase or other git technique, I viewed them as just another

1http://typelevel.org/
2https://youtu.be/RGFZ0fT_Pzw

http://typelevel.org/
https://youtu.be/RGFZ0fT_Pzw

8 Chapter 1. Preface

kind of problem. As you recall, this entire book is focused on learning solutions by learning
problems they solve - so more problems, more content to learn! Concretely, if you make
a typo, maybe your compiler could have discovered it? Or maybe your code is not DRY
enough, so that you changed it in one place, but forgot to change the other one? So, instead
of editing out these typos and bugs and making a clean, sterile commit sequence, I preserved
them and described why they happened and how to avoid them. Indeed, we all are going
to apply this knowledge in the real world, and the real world is not a sterile, bug-free place
where everything happens according to the text book. Who will I be lying to if I try to create
an "ideal" commit sequence - this never happens in the real world anyway.

• The principle made in this book is "functional programming last". We won’t be using
functional techniques right away, rather we will start with tried and working imperative
solutions. Indeed, if you are reading this book, you are probably an experienced imperative
programmer looking to see what functional programming is all about. You worked on lots of
problems, and you know that imperative programming works just great solving them. If the
existing solutions work, that’s the job of the functional programming to prove its value, not of
the imperative programming. Concretely, this means that if we need to do an I/O streaming,
we won’t be going to FS23, but to Apache IO4. Only when we start to encounter problems
with the existing solutions that we may switch to the functional ones.

• Technical chapters. As in any real-life application, not all of our commits will be about
learning new technologies. Some of them will be dedicated to refactoring and architectural
improvement. Hence certain chapters covering these commits are purely technical. More
often than not they will merely mention the refactoring was done without going into too
much details - just so that sudden changes in the code don’t surprise you in the later chapters.

1.2 Structure

This book consists of four parts:
• Inception - covers the beginning of the life of the application. The project setup, the early

design decisions - basically the setting for what happens next.
• Server Side - covers the server side of the application. In process, we will cover what you

can do with implicit conversions in Scala, the motivation for pure functional design, and some
patterns of functional programming: Functional Onion Architecture and the Type Classes.

• Client Side - covers the client side developments. In process, we will focus in more details
on why we need effect types (F[A]), how they naturally lead to Monads and to libraries like
Cats.

• Video Streaming - covers the implementation of the video browsing and streaming capability.
Here, we will learn about more advanced functional programming techniques: a real-world
scenario for when you want to use Applicative, Travers and Monad Transformers.

The parts consist of chapters. Every chapter is bound to a certain commit or a set of commits
and aims to introduce a certain concept used in these commits. Usually chapters consist of the
following sections:

• Motivation describes the problem we are facing. Why we had the need to change something
at all.

• Solution. once we understood the problem from the Motivation section, we will discuss its
solution in this section. Here, we discuss it on the conceptual level, the level of planning.

• Implementation. This is where we turn our Solution into code.

3https://github.com/functional-streams-for-scala/fs2
4https://commons.apache.org/io/

https://github.com/functional-streams-for-scala/fs2
https://commons.apache.org/io/

1.3 Conventions 9

1.3 Conventions

1.3.1 Remarks
At the beginning of each chapter, you’ll usually see remarks as follows:

M Motivation in one sentence

C ff3d4d

The "M", or Motivation, remark describes the motivation of the chapter in one sentence. The
essential idea behind what we will do. It will be useful to keep in mind this idea throughout the
chapter, use it as a "beacon" to know what it is all about. Also it can be useful if you want to quickly
repeat the content covered in the book, or gain a birds-eye view on how the application evolves.

The "C", or Commit, remark states the commits covered in this chapter. The commits are
clickable, and will take you to the GitHub page with the diff in question.

1.3.2 Code Listings
The code listings used in the book come in two flavors: conventional listings and diffs.

Here’s a typical conventional source:

Listing 1.1: MainJVM.scala, ec72db

10 def main(args: Array[String]): Unit = {
11 val server = HttpServer.create(new InetSocketAddress (8080) ,

0)
12
13 def serveFile(path: String , contentType: String = "text/html

"): HttpHandler = { e: HttpExchange =>
14 val file = new File(s"assets/$path")
15 val fileIs = FileUtils.openInputStream(file)
16 val os = e.getResponseBody
17 try {
18 e.sendResponseHeaders (200, 0)
19 IOUtils.copy(fileIs , os)
20 os.close()
21 } finally {
22 os.close()
23 fileIs.close()
24 }
25 }
26
27 server.createContext("/", serveFile("html/index.html"))
28 server.createContext("/js/application.js", serveFile("js/

application.js", "text/javascript"))
29 server.createContext("/js/application.js.map", serveFile("js

/application.js.map", "text/plain"))
30
31 server.start()
32 }

The title of the listing follows a convention and contains the following:

https://github.com/functortech/functional-streamer/commit/ff3d4d
https://github.com/functortech/functional-streamer/blob/ec72db/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/ec72db

10 Chapter 1. Preface

• The name of the file the listing was taken from. It is clickable and will take you to the GitHub
page of that file as it was during the commit we are currently on.

• The commit this file belongs to. If you click the commit, you will be taken to its diff page.
And here is a typical diff listing:

Listing 1.2: MainJS.scala, 055f4e, @@ -1,9 +1,11 @@
1 package functionalstreamer
2
3 import scala.scalajs.js.JSApp
4 +import org.scalajs.dom.{document , window}
5
6 object MainJS extends JSApp {
7 - def main(): Unit = {
8 - println ("Hello World")
9 + def main(): Unit = window.onload = { _ =>

10 + val placeholder = document.getElementById ("body -
placeholder ")

11 + placeholder.innerHTML = "Hello World from JS"
12 }
13 }

It follows the Unified Diff Format5. This format describes changes to the sources in terms of
what is removed and what is added by the commit.

In the title, you can see one more element added, the @@ -1,9 +1,11 @@. This essentially
means, "we removed 9 lines starting from the line 1 from the file before the commit, and inserted
11 lines starting from the line 1 to the file after the commit, as specified in the listing that follows".

In the listing, you can see which lines exactly are removed and which are added by the commit.
Whatever is prefixed by "-" is removed from the original file by the commit, and what is prefixed
by "+" - is added.

In this example, we have added one more import, removed the original definition of the main
method and provided a new one.

If a listing lacks a file name or a commit in its title, this means it does not belong to the code
base and most probably is presented as a thought experiment.

1.4 Obtaining and working with the sources
The GitHub page of the application we will be discussing is as follows: https://github.com/functortech/functional-
streamer. Here is how we will set up our environment6:

• In order to download the repository, run git clone https://github.com/functortech/functional-streamer.git.
Then, cd to the directory it was cloned into by running cd functional-streamer com-
mand.

• To navigate between commits, run git checkout <commit>, for example, git checkout
055f4e.

• To find out which commit you are currently on, run git status.
• If you accidentally modify the code and want to reset it to the condition as it was in the

commit you are on, run git reset –hard.
• If you’ve got files that are untracked by Git and that fail you the compilation, you can get rid

of them via git clean -f7. This normally should not happen.
5http://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html#Detailed-Unified
6The only prerequisites to set everything up are up-to-date versions of Git and SBT
7https://stackoverflow.com/q/61212

https://github.com/functortech/functional-streamer/blob/055f4e/js/src/main/scala/functionalstreamer/MainJS.scala
https://github.com/functortech/functional-streamer/commit/055f4e
https://github.com/functortech/functional-streamer
https://github.com/functortech/functional-streamer
http://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html#Detailed-Unified
https://stackoverflow.com/q/61212

1.5 How to read this book 11

• We will be running and compiling the project from the SBT console. To enter the SBT
console, run sbt. This book was not written against any IDE, so if you want to use a
particular IDE, you should consult its documentation.

• To compile and start the program, run functionalstreamerJVM/reStart (this command
will be explained later in the Inception part).

1.5 How to read this book
1.5.1 Philosophy

This book should not be perceived as a conventional textbook. Rather, think of it as of a story. A
story usually tells us a sequence of events that happened in someone’s life. Similarly, this book
tells a story of the life of the video streaming server application. The chapters are written in
chronological order, so at the beginning of the book you’ll learn about the early commits in life of
the application, and the closer you move to the end, the later commits you will be learning about.

While reading a conventional story, you may think of the motivation of the events in the lives
of people involved. You may think why they acted this way or another, and how would you have
acted in their place. While thinking on the stories you read, you gain experience that you can use in
your real life. Similarly, this book will make you think on the course the application develops over
time. That’s exactly how you will gain more experience from it.

1.5.2 Algorithm
The key is to follow what is happening during each commit and why. Therefore, it is highly
recommended that you have the list of commits8 in front of you at all times, and whenever you see
a reference to a commit in the book, you should see where this commit belongs in the list. Just to
see the big picture.

To gain hands-on experience, I recommend to also follow the commits in your local clone of
the repository. Whenever you see a commit, it is advised that you checkout it locally, compile, run
and experiment with it. The way you can navigate through commits is described in the section on
obtaining the sources.

This information should be sufficient for you to be all set for the journey. It is my hope that it
will be insightful and fun for you!

8https://github.com/functortech/functional-streamer/commits/master

https://github.com/functortech/functional-streamer/commits/master

I

2 Functional Streamer, the Application . 15
2.1 Motivation
2.2 Solution
2.3 Setting

3 DSL . 19
3.1 Motivation
3.2 Solution
3.3 Implementation
3.4 Conclusion

Inception

2. Functional Streamer, the Application

M A minimalistic video streaming server.

C ff3d4d, ec72db, 055f4e

2.1 Motivation

Functional Streamer was born out of a personal need to be able to stream videos from my computer
to the tablet via local Wi-Fi network. The existing solutions for that were either too slow or did not
do exactly what I wanted.

The idea of Functional Streamer is to have a minimalistic, local YouTube: a server with access
to your file system that you can browse and where you can watch your videos.

2.2 Solution

We need a server that is capable of serving static files and streaming videos.
Another desirable feature is that the streaming site should be a single-page web application

(SPA) that communicates with the server via a JSON-based HTTP API. The motivation behind an
SPA is as follows:

• It keeps the server-side specialized on the logic and the client-side - on representation.
• The JSON API opens the possibility to implement native mobile applications to use the

service with.

2.3 Setting

Since we are building an SPA, we need a project that has a web server and a JavaScript client. For
this reason, we set up the project as a Scala.js one via the first commit, ff3d4d.

Next we need to implement a server-side capability to serve pages. We try to solve this task with
minimal effort. For this purpose, we will start from the most simple technologies: Sun’s standard
HttpServer1 for listening to HTTP events and Apache Commons IO to handle streaming:

1https://docs.oracle.com/javase/8/docs/jre/api/net/httpserver/spec/com/sun/net/httpserver/package-summary.html

https://github.com/functortech/functional-streamer/commit/ff3d4d
https://github.com/functortech/functional-streamer/commit/ec72db
https://github.com/functortech/functional-streamer/commit/055f4e
https://github.com/functortech/functional-streamer/commit/ff3d4d
https://docs.oracle.com/javase/8/docs/jre/api/net/httpserver/spec/com/sun/net/httpserver/package-summary.html

16 Chapter 2. Functional Streamer, the Application

Listing 2.1: MainJVM.scala, ec72db

3 import java.io.File
4 import java.net.InetSocketAddress
5 import com.sun.net.httpserver .{HttpServer , HttpHandler ,

HttpExchange}
6
7 import org.apache.commons.io.{IOUtils , FileUtils}

HttpServer is extremely easy to bootstrap with only several lines of code. And Apache
Commons IO can turn ten lines of stream management code into just one.

Listing 2.2: MainJVM.scala, ec72db

10 def main(args: Array[String]): Unit = {
11 val server = HttpServer.create(new InetSocketAddress (8080) ,

0)
12
13 def serveFile(path: String , contentType: String = "text/html

"): HttpHandler = { e: HttpExchange =>
14 val file = new File(s"assets/$path")
15 val fileIs = FileUtils.openInputStream(file)
16 val os = e.getResponseBody
17 try {
18 e.sendResponseHeaders (200, 0)
19 IOUtils.copy(fileIs , os)
20 os.close()
21 } finally {
22 os.close()
23 fileIs.close()
24 }
25 }
26
27 server.createContext("/", serveFile("html/index.html"))
28 server.createContext("/js/application.js", serveFile("js/

application.js", "text/javascript"))
29 server.createContext("/js/application.js.map", serveFile("js

/application.js.map", "text/plain"))
30
31 server.start()
32 }

This code is straightforward in a manner typical for Java. We first create the server, then
instruct it to listen to several request URLs and respond with the corresponding files. Since all these
endpoints do the same thing - read a file and respond with it - the logic to read the file is abstracted
into a separate method. And yes, doing os.close() twice is an unintended typo.

We also add the static file to serve, index.html.

Next, since we are building an SPA, it is a good idea to implement a rudimentary client-side
capability to set different views. Just so that we can have something to start with when we move to
implementing the client-side.

https://github.com/functortech/functional-streamer/blob/ec72db/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/ec72db
https://github.com/functortech/functional-streamer/blob/ec72db/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/ec72db
https://github.com/functortech/functional-streamer/blob/ec72db/assets/html/index.html

2.3 Setting 17

Listing 2.3: index.html, 055f4e, @@ -25,7 +25,7 @@

25
26 </div>
27 <div class="ui divider"></div>
28 - <div >Hello World </div >
29 + <div id="body -placeholder"></div >
30 </div>
31
32 </body>

Listing 2.4: MainJS.scala, 055f4e, @@ -1,9 +1,11 @@

1 package functionalstreamer
2
3 import scala.scalajs.js.JSApp
4 +import org.scalajs.dom.{document , window}
5
6 object MainJS extends JSApp {
7 - def main(): Unit = {
8 - println ("Hello World")
9 + def main(): Unit = window.onload = { _ =>

10 + val placeholder = document.getElementById ("body -
placeholder ")

11 + placeholder.innerHTML = "Hello World from JS"
12 }
13 }

If you run the program with functionalstreamerJVM/reStart2, you should be able to
navigate to localhost:8080.

2reStart comes from the Revolver plugin for SBT. It allows to run the program in a separate JVM. Here, the
motivation is that we should be able to re-start and re-compile the project frequently. But a running server, obviously,
blocks the main thread, preventing us from running SBT commands. Revolver allows us to run the server while
retaining the access to the SBT console at the same time. You can learn more about Revolver from its GitHub page:
https://github.com/spray/sbt-revolver

https://github.com/functortech/functional-streamer/blob/055f4e/assets/html/index.html
https://github.com/functortech/functional-streamer/commit/055f4e
https://github.com/functortech/functional-streamer/blob/055f4e/js/src/main/scala/functionalstreamer/MainJS.scala
https://github.com/functortech/functional-streamer/commit/055f4e
http://localhost:8080
https://github.com/spray/sbt-revolver

3. DSL

M Hide technical details and focus on the important when defining the server.

C a23941

3.1 Motivation

There are certain things with this Java-style implementation that are not particularly likable:

• The way HttpHandlers are bound to paths. For every path you need to call a createContext
method on the server, quite a bit of boilerplate.

• HttpHandlers are bound to a certain request URL represented as a String. However, what
if we want more fine-grained filtering? For example, for the purposes of AJAX, we may
want to have an endpoint that handles only POST requests. With the current implementation,
we would probably need to have an if-else clause in every HttpHandler to check for an
appropriate method, which is also ugly.

So the problem we are facing here is that the important details are hidden amidst a lot of
technical code (also a typical scenario for Java). What we need, hence, is a convenient DSL - a
Domain-Specific Language, that would describe what we need the way we want it, while hiding
technical details.

3.2 Solution

We have a situation where different code should be executed based on the type of the request that
arrives. Differentiation based on the kind of some value is a job for a match statement, or its cousin,
PartialFunction.

Instead of having a bunch of calls to createContext, we may have a single partial function
that matches the URL and the method of the request, and executes a corresponding handler. We
want something as follows:

https://github.com/functortech/functional-streamer/commit/a23941

20 Chapter 3. DSL

Listing 3.1: MainJVM.scala, a23941

6 def main(args: Array[String]): Unit = {
7 val server = createServer (8080) {
8 case e @ GET -> "/" => serveFile(e, "html

/index.html")
9 case e @ GET -> "/js/application.js" => serveFile(e, "js/

application.js")
10 }
11 server.start()
12 }

3.3 Implementation

How do we implement this DSL? A DSL involves a set of types to represent what is important and
some operations on these types.

3.3.1 Types
We should define the types we will describe the server with.

Listing 3.2: ServerAPI.scala, a23941

11 // Types we will use to describe the Server
12 type Handler = PartialFunction[HttpExchange , Unit]
13 type Path = String
14
15 sealed trait Method
16 case object GET extends Method
17 case object POST extends Method

A Handler is a PartialFunction with its domain being some subset of all HttpExchanges.
A PartialFunction implies that we will be using case statements to match on the HttpExchange,
and that not all HttpExchanges may be handled by a given handler.

3.3.2 High-level API
Now, we need to define what we can do with these types and we can create instances of them.

Server Creation
The function to create the server can be implemented as follows:

Listing 3.3: ServerAPI.scala, a23941

44 def createServer(port: Int)(handler: Handler): HttpServer = {
45 val server = HttpServer.create(new InetSocketAddress(port),

0)
46 val nativeHandler: HttpHandler = toNativeHandler(handler)
47 server.createContext("/", nativeHandler)
48 server
49 }

createServer accepts a port on which to listen and the handler. It then converts the DSL
type of Handler to the native Sun’s HttpHandler and binds it to the root path. This way, the
path-matching logic is delegated to the Handler, not the Sun’s native HttpServer.

https://github.com/functortech/functional-streamer/blob/a23941/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/a23941
https://github.com/functortech/functional-streamer/blob/a23941/jvm/src/main/scala/functionalstreamer/ServerAPI.scala
https://github.com/functortech/functional-streamer/commit/a23941
https://github.com/functortech/functional-streamer/blob/a23941/jvm/src/main/scala/functionalstreamer/ServerAPI.scala
https://github.com/functortech/functional-streamer/commit/a23941

3.4 Conclusion 21

Here, createServer is a high-level abstraction of some lower-level logic. Notice the friction
that starts to appear between the high- and the low-level APIs: the need to convert the higher-level
Handler to the lower-level HttpHandler, so that the lower-level API can understand it. To address
it, a conversion function, toNativeHandler is defined.

Request
We are able to represent the handlers with the partial functions defined on HttpExchange, but
we are unable to extract the HTTP method and the URL yet, as in the desired main method (see
Listing 3.1). What we need here is an extractor for the HttpExchange type:

Listing 3.4: ServerAPI.scala, a23941

21 object -> {
22 def unapply(exchange: HttpExchange): Option [(Method , Path)]

=
23 toMethod(exchange.getRequestMethod).map { _ -> exchange.

getRequestURI.getPath }
24 }

Since the name of the object consists of symbols and its unapply method returns a pair, we
will be able to pattern-match on it in an infix operator style.

Note also that we face the friction between the two APIs once again. This time, we need to
convert the request method from a low-level String to a high-level Method. As previously, we do
that via a conversion method.

3.4 Conclusion
We now have two APIs: the low-level ones that comes with the Sun’s HttpServer, and the higher-
level one we have just built. The lower-level API focuses on the technical aspects of the server,
while the higher-level DSL focuses on the task at hand that we are implementing.

The only thing to notice at this stage is the friction that appears between the two APIs. We need
to communicate between them at some point, and hence the need to convert values from one API
language to the other one.

https://github.com/functortech/functional-streamer/blob/a23941/jvm/src/main/scala/functionalstreamer/ServerAPI.scala
https://github.com/functortech/functional-streamer/commit/a23941

II
4 Implicit Conversions 25
4.1 Refactoring: Modularisation
4.2 Motivation
4.3 Solution
4.4 Implementation
4.5 Conclusion

5 Rich Wrappers . 27
5.1 Motivation
5.2 Solution
5.3 Implementation
5.4 Conclusion

6 Refactoring: Error Handling 31
6.1 Responding with Strings
6.2 Error Handling

7 Purity. Functional Onion Architecture. . 35
7.1 Motivation
7.2 Solution
7.3 Implementation

8 Type Classes . 41
8.1 Motivation
8.2 Solution
8.3 Implementation
8.4 Implicit Scope
8.5 Conclusion

Server Side

4. Implicit Conversions

M Hide the technical detail of converting (for example, from a high-level API to a low-level one)

C ca11ff

4.1 Refactoring: Modularisation

M Technical: Refactoring

ServerAPI.scala grew a bit larger and it contains logic concerning different aspects of the
high-level API. So it makes sense to split it into several files and settle them to a separate package:

• Method.scala contains the sealed trait Method and its subclasses, because it is a good
practice to keep each class in a separate file.

• package.scala, the package object, contains the high-level API types (Handler and Path,
as well as the conversion logic between the two APIs - the extractor object ->).

• ServerAPI.scala contains only the API that is supposed to be called by the user. createServer
and serveFile ended up here.

4.2 Motivation

In the previous chapter, we have encountered the friction in the place where the two APIs meet. We
solved it in a standard way: by encapsulating the conversion logic in separate methods. Can Scala
do better?

4.3 Solution

When we need to convert one type to another but the conversion details feel too technical, Scala
has implicit conversions to offer.

Implicit conversions are ordinary methods defined with the implicit keyword. They accept a
single argument of a type that needs to be converted. They return some other type - the one we are
converting to.

https://github.com/functortech/functional-streamer/commit/ca11ff

26 Chapter 4. Implicit Conversions

So essentially they are just like the conversion methods we used in the previous chapter, but
with the implicit keyword.

When the compiler encounters an expression of some type in place where an expression of
another type is expected (e.g. Handler passed to a method that expects HttpHandler), it tries to
find an implicit conversion in scope that is capable of converting it to the right type. It looks at
the signatures: If we have some type A in place where B is expected, the compiler will look for
an implicit conversion method that accepts A and returns B - A => B. If it finds one, it applies it
implicitly.

We can redefine the previous implementation of the createServer method (see Listing 3.3)
as follows:

Listing 4.1: ServerAPI.scala, ca11ff

11 def createServer(port: Int)(handler: Handler): HttpServer = {
12 val server = HttpServer.create(new InetSocketAddress(port),

0)
13 server.createContext("/", handler)
14 server
15 }

4.4 Implementation
Now, let us define an implicit conversion to convert from Handler to HttpHandler implicitly:

Listing 4.2: package.scala, ca11ff

24 implicit def toNativeHandler(handler: Handler): HttpHandler =
{ exchange: HttpExchange =>

25 if (handler.isDefinedAt(exchange)) handler(exchange)
26 else {
27 exchange.sendResponseHeaders (404, 0)
28 val os = exchange.getResponseBody ()
29 try IOUtils.write("Not found", os)
30 finally os.close ()
31 }
32 }

In fact, all we had to do is to add an implicit keyword to the already existing conversion
method! Finally, the compiler will apply it automatically for us whenever this conversion is needed
(provided you imported it first).

4.5 Conclusion
Since the need to convert values from one type to another is so frequent, Scala has a built-in solution
to help with that. Whenever the you need to perform a conversion and the details of it feel too
technical or clutter your code, you can use implicit conversions to hide them.

https://github.com/functortech/functional-streamer/blob/ca11ff/jvm/src/main/scala/functionalstreamer/server/ServerAPI.scala
https://github.com/functortech/functional-streamer/commit/ca11ff
https://github.com/functortech/functional-streamer/blob/ca11ff/jvm/src/main/scala/functionalstreamer/server/package.scala
https://github.com/functortech/functional-streamer/commit/ca11ff

5. Rich Wrappers

M Method injection into already defined classes

C ca11ff

5.1 Motivation

We have another point of friction: the one where we have to convert the request method from
String to Method with a toMethod call. Can we also prepend implicit to that method and get
rid of its call from ->.unapply? So that unapply looks as follows:

1 def unapply(exchange: HttpExchange): Option [(Method , Path)] =
2 exchange.getRequestMethod.map { _ -> exchange.getRequestURI.

getPath }

We can try:

1 [error] functionalstreamer/server/package.scala :13: type
mismatch;

2 [error] found : String
3 [error] required: ?{def map: ?}
4 [error] Note that implicit conversions are not applicable

because they are ambiguous:
5 [error] both method augmentString in object Predef of type (x

: String)scala.collection.immutable.StringOps
6 [error] and method toMethod in package server of type (str:

String)Option[functionalstreamer.server.Method]
7 [error] are possible conversion functions from String to ?{

def map: ?}
8 [error] exchange.getRequestMethod.map { _ -> exchange.

getRequestURI.getPath }
9 [error] ^

10 [error] one error found

28 Chapter 5. Rich Wrappers

Oops! At the position exchange.getRequestMethod of type String is encountered, the
compiler expects something with the map method (required: ?{def map: ?}) - since we try
to call that method on that object.

5.1.1 Two implicit conversions in scope
Normally, String does not have a map method. However, Scala provides us with an implicit
conversion from String to the StringOps1 class, that defines collection methods on String.
Also we have just defined an implicit conversion from String to Option[Method] (toMethod),
and Option also defines the map method. Two or more applicable implicit conversions in scope are
illegal in Scala, the compiler does not know which one to choose. Hence an error.

5.1.2 Implicits can be dangerous
Another reason not to introduce that conversion from String to Option[Method] is that String
is a very abundant type. The more you use a type that has implicit conversions, the harder it is to
trace where they are applied. It can lead to the conversion being applied accidentally, without your
knowledge, in the wrong place, which may result in unexpected behaviour.

5.2 Solution

5.2.1 Essence
StringOps is a rich wrapper for the String class. A rich wrapper is a pattern that is possible due
to Scala’s implicit conversions. Essentially, rich wrappers allow you to inject methods into already
defined classes.

5.2.2 Details
A rich wrapper over some type A used to inject a method f into it includes two things:

• A class that has the f method and a reference to the value of type A it wraps.
• An implicit conversion from A to that class.
This way, when we call f on A, the compiler implicitly converts that A to the wrapper that has

the map method.
In our case, StringOps is a rich wrapper over the type String used to inject map into it.

5.2.3 Application
We can use the Rich Wrapper pattern to inject a toMethod method into a String. This way, at
least, we will get rid of a pair of parentheses and will be able to perform the conversion in a more
OOP way:

package.scala, ca11ff

11 object -> {
12 def unapply(exchange: HttpExchange): Option [(Method , Path)]

=
13 exchange.getRequestMethod.toMethod.map { _ -> exchange.

getRequestURI.getPath }
14 }

Compare this to the original implementation (see Listing 3.4). Arguably, the new implementa-
tion is more readable.

1http://www.scala-lang.org/api/current/scala/collection/immutable/StringOps.html

https://github.com/functortech/functional-streamer/blob/ca11ff/jvm/src/main/scala/functionalstreamer/server/package.scala
https://github.com/functortech/functional-streamer/commit/ca11ff
http://www.scala-lang.org/api/current/scala/collection/immutable/StringOps.html

5.3 Implementation 29

5.3 Implementation
We can perform this injection as follows:

package.scala, ca11ff

16 implicit class MethodString(str: String) {
17 def toMethod: Option[Method] = str.toLowerCase match {
18 case "get" => Some(GET)
19 case "post" => Some(POST)
20 case _ => None
21 }
22 }

The implicit class construct is a shorthand that exists specifically with rich wrappers in
mind. Here is what is going on here:

• An implicit class defines an ordinary class with a single constructor argument. However,
that constructor is implicit conversion itself. It converts the constructor parameter type to the
class this constructor creates.

• We then define some methods in the body of that class that can work on that constructor
argument.

• The effect is that whenever the compiler sees the call to these methods on a value for which
an ‘implicit class‘ is defined, it will find and perform the conversion to that class.

5.4 Conclusion
The rich wrapper pattern allows you to inject methods in classes and types without having control
over their definition. It is possible due to the implicit conversions the Scala compiler supports.

https://github.com/functortech/functional-streamer/blob/ca11ff/jvm/src/main/scala/functionalstreamer/server/package.scala
https://github.com/functortech/functional-streamer/commit/ca11ff

6. Refactoring: Error Handling

M Technical: Adding the capability to specify error handlers

C 55e6f4 to f8e0b0

6.1 Responding with Strings

In the toNativeHandler method (see Listing 4.2), we have defined how to respond when handler
can not handle the request. However, we already have the logic to respond with files (serveFile
method, unchanged since Listing 2.2) in the ServerAPI.scala. It is only reasonable to encapsulate
the logic to return Strings the same way. This is what 55e6f4 does:

package.scala, 55e6f4, @@ -23,11 +22,6 @@ package object server

23
24 implicit def toNativeHandler(handler: Handler):

HttpHandler = { exchange: HttpExchange =>
25 if (handler.isDefinedAt(exchange)) handler(exchange)
26 - else {
27 - exchange.sendResponseHeaders (404, 0)
28 - val os = exchange.getResponseBody ()
29 - try IOUtils.write("Not found", os)
30 - finally os.close()
31 - }
32 + else ServerAPI.serveString(exchange , "Not Found", 404)
33 }
34 }

https://github.com/functortech/functional-streamer/compare/55e6f4~1...f8e0b0
https://github.com/functortech/functional-streamer/blob/ca11ff/jvm/src/main/scala/functionalstreamer/server/ServerAPI.scala
https://github.com/functortech/functional-streamer/commit/55e6f4
https://github.com/functortech/functional-streamer/blob/55e6f4/jvm/src/main/scala/functionalstreamer/server/package.scala
https://github.com/functortech/functional-streamer/commit/55e6f4

32 Chapter 6. Refactoring: Error Handling

ServerAPI.scala, 55e6f4, @@ -29,2 +29,9 @@ trait ServerAPI

29 }
30 +
31 + def serveString(e: HttpExchange , str: String , responseCode

: Int): Unit = {
32 + e.sendResponseHeaders (404, 0)
33 + val os = e.getResponseBody ()
34 + try IOUtils.write(str , os)
35 + finally os.close()
36 + }
37 }

6.2 Error Handling

The error handling logic should be customizable by the end user. It should not be hard-coded into
the server, but some reasonable default should be provided.

To address this, we can pass the error handler in the same place where the ordinary handlers are
passed - in the createServer (see Listing 4.1) method.

However, if the ordinary handlers are partial functions, the error handler must be a total function.
More precisely, the error handler must be able to handle the absolute complement1 of the domain
of the handler partial function. In other words, everything not handled by the request handler, must
be handled by the error handler.

So first, we redefine our handlers:

package.scala, f8e0b0, @@ -3,5 +3,6 @@ package functionalstreamer

3 import com.sun.net.httpserver .{ HttpHandler , HttpExchange}
4
5 package object server {
6 - type Handler = PartialFunction[HttpExchange , Unit]
7 - type Path = String
8 + type PartialHandler = PartialFunction[HttpExchange , Unit]
9 + type TotalHandler = HttpExchange => Unit

10 + type Path = String

1https://en.wikipedia.org/wiki/Complement_(set_theory)

https://github.com/functortech/functional-streamer/blob/55e6f4/jvm/src/main/scala/functionalstreamer/server/ServerAPI.scala
https://github.com/functortech/functional-streamer/commit/55e6f4
https://github.com/functortech/functional-streamer/blob/f8e0b0/jvm/src/main/scala/functionalstreamer/server/package.scala
https://github.com/functortech/functional-streamer/commit/f8e0b0
https://en.wikipedia.org/wiki/Complement_(set_theory)

6.2 Error Handling 33

Then we modify the createServer method accordingly:

ServerAPI.scala, f8e0b0, @@ -8,12 +8,17 @@ import org.apache.commons.io.IOUtils,
FileUtils

8 object ServerAPI extends ServerAPI
9 trait ServerAPI {

10 - def createServer(port: Int)(handler: Handler): HttpServer
= {

11 + def createServer(port: Int)(handler: PartialHandler ,
errorHandler: TotalHandler = defaultErrorHandler):
HttpServer = {

12 val server = HttpServer.create(new InetSocketAddress(
port), 0)

13 - server.createContext ("/", handler)
14 + server.createContext ("/", { e: HttpExchange =>
15 + if (handler.isDefinedAt(e)) handler(e)
16 + else errorHandler(e)
17 + })
18 server
19 }
20
21 + val defaultErrorHandler: TotalHandler = serveString(_, "

Not Found", 404)
22 +
23 def serveFile(e: HttpExchange , path: String , contentType:

String = "text/html"): Unit = {
24 val file = new File(s"assets/$path")
25 val fileIs = FileUtils.openInputStream(file)

The conversion from the handler to an HttpHandler with an error fallback handler is done
only once, in the createServer method. So we can to abolish the implicit conversion altogether:

package.scala, f8e0b0, @@ -19,9 +20,4 @@ package object server

3 case _ => None
4 }
5 }
6 -
7 - implicit def toNativeHandler(handler: Handler):

HttpHandler = { exchange: HttpExchange =>
8 - if (handler.isDefinedAt(exchange)) handler(exchange)
9 - else ServerAPI.serveString(exchange , "Not Found", 404)

10 - }
11 }

Also notice how Java 8 functional interfaces allow us to write the HttpHandler as a Scala
lambda, without the new HttpHandler {...} syntax.

https://github.com/functortech/functional-streamer/blob/f8e0b0/jvm/src/main/scala/functionalstreamer/server/ServerAPI.scala
https://github.com/functortech/functional-streamer/commit/f8e0b0
https://github.com/functortech/functional-streamer/blob/f8e0b0/jvm/src/main/scala/functionalstreamer/server/package.scala
https://github.com/functortech/functional-streamer/commit/f8e0b0

7. Purity. Functional Onion Architecture.

M Side effects are the unknown information for a caller of a side-effecting function. Sometimes their logic
repeats. The Onion architecture DRYs the side effect logic and removes the unknown component from
the application logic.

C 55e6f4 to 72ec5c

7.1 Motivation

7.1.1 Bugs

If you read the commits, you have probably noticed something ugly. In the serveString method,
we forgot to set the response code from the argument of the function:

ServerAPI.scala, f8e0b0, @@ -30,6 +35,6 @@ trait ServerAPI

30
31 def serveString(e: HttpExchange , str: String , responseCode

: Int): Unit = {
32 - e.sendResponseHeaders (404, 0)
33 + e.sendResponseHeaders(responseCode , 0)
34 val os = e.getResponseBody ()
35 try IOUtils.write(str , os)
36 finally os.close()

This happened because, as you recall, we just copy-pasted the string serving logic from the
error handler into that function during 55e6f4:

https://github.com/functortech/functional-streamer/compare/55e6f4~1...72ec5c
https://github.com/functortech/functional-streamer/blob/f8e0b0/jvm/src/main/scala/functionalstreamer/server/ServerAPI.scala
https://github.com/functortech/functional-streamer/commit/f8e0b0
https://github.com/functortech/functional-streamer/commit/55e6f4

36 Chapter 7. Purity. Functional Onion Architecture.

package.scala, 55e6f4, @@ -23,11 +22,6 @@ package object server

23
24 implicit def toNativeHandler(handler: Handler):

HttpHandler = { exchange: HttpExchange =>
25 if (handler.isDefinedAt(exchange)) handler(exchange)
26 - else {
27 - exchange.sendResponseHeaders (404, 0)
28 - val os = exchange.getResponseBody ()
29 - try IOUtils.write ("Not found", os)
30 - finally os.close()
31 - }
32 + else ServerAPI.serveString(exchange , "Not Found", 404)
33 }
34 }

Other two ugly things are present in the serveFile method:

ServerAPI.scala, f8e0b0

22 def serveFile(e: HttpExchange , path: String , contentType:
String = "text/html"): Unit = {

23 val file = new File(s"assets/$path")
24 val fileIs = FileUtils.openInputStream(file)
25 val os = e.getResponseBody
26 try {
27 e.sendResponseHeaders (200, 0)
28 IOUtils.copy(fileIs , os)
29 os.close()
30 } finally {
31 os.close()
32 fileIs.close()
33 }
34 }

First, we forgot to set the contentType header. Second, there is that os.close() duplication
type we mentioned earlier. Believe it or not, these bugs are not staged. This is a real-world scenario.

Why did these happen, and what can we do to prevent them and the likes?

7.1.2 Problems

Non-DRY code

Don’t Repeat Yourself1 principle tells us not to write the same logic twice. serveFile and
serveString methods do a very close thing:

• They set the request metadata, such as the headers and the response code.
• They perform a response by writing something from one stream to another.
Static files and raw strings are not the only cases of responses - we will also need to respond

with JSON and video streams. If we don’t follow the DRY principle and write the same logic many
times, we increase the opportunity for these kind of bugs.

1https://en.wikipedia.org/wiki/Don’t_repeat_yourself

https://github.com/functortech/functional-streamer/blob/55e6f4/jvm/src/main/scala/functionalstreamer/server/package.scala
https://github.com/functortech/functional-streamer/commit/55e6f4
https://github.com/functortech/functional-streamer/blob/f8e0b0/jvm/src/main/scala/functionalstreamer/server/ServerAPI.scala
https://github.com/functortech/functional-streamer/commit/f8e0b0
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

7.2 Solution 37

Side effects
The first solution that comes to mind is to encapsulate the common logic above into a separate
method:

1 def serveFile(e: HttpExchange , path: String , contentType:
String = "text/html"): Unit = {

2 val file = new File(s"assets/$path")
3 respond(e, () => FileUtils.openInputStream(file),

contentType , 200)
4 }
5
6 def serveString(e: HttpExchange , str: String , responseCode:

Int): Unit =
7 respond(e, () => IOUtils.toInputStream(str , "utf8"), "text/

plain", responseCode)
8
9 def respond(e: HttpExchange , isGen: () => InputStream ,

10 path: String , contentType: String , responseCode: Int): Unit
= ???

Notice how these methods together with the Handler type return Unit. This means we expect
some side effects to happen in these functions.

We can define a side effect as some set of instructions that is executed inside a function so, that
it affects the environment outside the scope of this function. In the case of the above methods,
HttpExchange which is passed to them from the outside world is modified and is written to - hence
side effects.

A side effecting function has two aspects to it:
• The known: its return type (in our case, Unit). It is known, because it is clearly manifested

in the signature.
• The unknown: its side effects (in our case, the procedure of responding to a request). Typically

most side effects are not manifested by the functions. An exception is Java exceptions: in
Java, a method that throws exceptions (also a side effect, since it has a potential of disrupting
the program flow outside the method’s scope) must declare so in the signature. But this
argument is irrelevant for Scala.

So with the above solution, when the Handlers return Unit and are side effecting, we do not
know what happens inside them at their call site.

What can go wrong here is that there is no guarantee people will call our respond method.
Some people may not know we implemented it, some people may want to reinvent the wheel and
continue writing the responses themselves. There is still no guarantee the respond method above
is the only place such a logic will be concentrated.

This is all because we are explicitly defining a Handler as a function that performs arbitrary
side effects. We can come up with a better definition.

7.2 Solution
7.2.1 Purity

A pure function is a function that does not produce any side effects and the result of which is
determined only by its input.

In contrast to the side effecting functions, the pure ones have only one aspect to them: their
return type is defined. All the information about what happened inside the function is stored in the
value that it returns.

38 Chapter 7. Purity. Functional Onion Architecture.

This has obvious the benefit of reducing the mental load of needing to track the side effects.

Making our handlers pure with respect to the response side effects eliminates the problem of
the unknown aspect coming with the side effecting functions.

7.2.2 Functional Onion Architecture

The solution to the problem of DRY-ing the effects comes with the functional onion architecture2.
This is an adaptation of the ordinary onion architecture3

The idea is that your application has a layered structure. The layers closer to the "core" of
the onion - the inner layers - must not produce any side effects and be pure. Their job is only to
compute the description of the operation to be done, but not actually do it.

After the description of the task to be done is computed, it is passed to the outermost layer of
the onion. This is the only layer that is allowed to produce side effects. It executes the description
passed to it from the inner layers and produces side effects in process.

The benefit here is that the side effects become concentrated in a single place - the outer layer.
And, hence, are DRY, easy to modify, test and debug.

Another benefit is that all the other layers now are pure - meaning they do not have the unknown
component of the side effects to it. This means it is easier to manipulate them: you no longer need
to worry about, say, canceling a side effect of a function when you want to reverse the computation
done in it.

Yet another benefit is that, as a rule, side effects happen during runtime. When you eliminate the
side effects from your business logic, you suddenly have an increased capability to catch possible
bugs on compile time via type-level techniques.

A few words should be said about the benefits for testability. It is much easier to test the
business logic of a pure core than that of a side effecting program. If your logic is pure, you do
not need to start a side-effecting server with the infrastructure required (e.g. a database or a proper
file system). All you need to do for testing is to run the pure function and analyze its output. This
is so because you know for sure that these functions do not do anything but produce the result
they return. The only thing that needs to be tested against the live environment is the topmost thin
side-effecting layer. It is usually much smaller than the business logic layer and contains only
low level operations: e.g. how to write to a database, how to read a file. In contrast, business
logic contains higher-level things (e.g. how to log in a user) expressed in the language the thin
side-effecting layer can interpret.

7.2.3 Putting it all together

In our case, the "onion" in question (or, rather, what we want to turn into onion) is the request
handler. Its business logic is to determine what to respond with - which input stream to read from
- and what metadata should be set for the response - the content type and the response code. Its
side effects is the process of actually writing the response into the output stream after setting the
metadata.

To turn this into an onion, we need to separate the two layers: the business logic and the side
effects.

2http://degoes.net/articles/modern-fp-part-2
3http://jeffreypalermo.com/blog/the-onion-architecture-part-1/

http://degoes.net/articles/modern-fp-part-2
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/

7.3 Implementation 39

7.3 Implementation

7.3.1 Handlers
First, let us define the class with which we will describe the response:

Response.scala, 72ec5c

1 package functionalstreamer.server
2
3 import java.io.InputStream
4
5 case class Response(
6 payload: () => InputStream
7 , contentType: String = "text/plain"
8 , responseCode: Int = 200
9)

Next, make the handlers return an instance of this class:

package.scala, 72ec5c, @@ -5,4 +5,4 @@

5 package object server {
6 - type PartialHandler = PartialFunction[HttpExchange , Unit]
7 - type TotalHandler = HttpExchange => Unit
8 + type PartialHandler = PartialFunction[HttpExchange ,

Response]
9 + type TotalHandler = HttpExchange => Response

10 type Path = String

The previous definition said: "We expect you to execute arbitrary side when a request arrives".
The current definition says: "We expect you to describe how you want to respond when a request
arrives".

7.3.2 Processing
Next, we need to define the way the Response should be processed:

ServerAPI.scala, 72ec5c

15 def createServer(port: Int)(handler: PartialHandler ,
errorHandler: TotalHandler = defaultErrorHandler):
HttpServer = {

16 val server = HttpServer.create(new InetSocketAddress(port),
0)

17
18 server.createContext("/", { e: HttpExchange =>
19 val Response(payloadIsGenerator , contentType , responseCode

) = handler.applyOrElse(e, errorHandler)
20
21 // Write the content type in the headers
22 val headers = e.getResponseHeaders
23 headers.put("Content -Type" , List(contentType).asJava)
24
25 // Get the payload and response body streams
26 val is = payloadIsGenerator ()

https://github.com/functortech/functional-streamer/blob/72ec5c/jvm/src/main/scala/functionalstreamer/server/Response.scala
https://github.com/functortech/functional-streamer/commit/72ec5c
https://github.com/functortech/functional-streamer/blob/72ec5c/jvm/src/main/scala/functionalstreamer/server/package.scala
https://github.com/functortech/functional-streamer/commit/72ec5c
https://github.com/functortech/functional-streamer/blob/72ec5c/jvm/src/main/scala/functionalstreamer/server/ServerAPI.scala
https://github.com/functortech/functional-streamer/commit/72ec5c

40 Chapter 7. Purity. Functional Onion Architecture.

27 val os = e.getResponseBody
28
29 try {
30 e.sendResponseHeaders(responseCode , 0) // Send the

status code
31 IOUtils.copy(is, os) // Write the

payload
32 } finally {
33 is.close()
34 os.close()
35 }
36 })
37
38 server
39 }

Now, there is only one place for us to forget to write the headers, the response code, and to
close the streams.

7.3.3 Response methods
Finally, we can rewrite our serveFile and serveString as follows:

ServerAPI.scala, 72ec5c

47 def serveFile(path: String , contentType: String = "text/html")
: Response =

48 Response(() => FileUtils.openInputStream(new File(s"assets/
$path")), contentType , 200)

49
50 def serveString(str: String , responseCode: Int): Response =
51 Response(() => IOUtils.toInputStream(str , defaultEncoding),

"text/plain", responseCode)

These methods now do not need to have a reference to HttpExchange to perform their logic.
Hence, it is easier to call them when defining the responses:

MainJVM.scala, 72ec5c, @@ -6,8 +6,8 @@

23 object MainJVM {
24 def main(args: Array[String]): Unit = {
25 val server = createServer (8080) {
26 - case e @ GET -> "/" => serveFile(e, "

html/index.html")
27 - case e @ GET -> "/js/application.js" => serveFile(e, "

js/application.js")
28 + case GET -> "/" => serveFile ("html/

index.html")
29 + case GET -> "/js/application.js" => serveFile ("js/

application.js", "application/javascript ")
30 }
31 server.start()
32 }

https://github.com/functortech/functional-streamer/blob/72ec5c/jvm/src/main/scala/functionalstreamer/server/ServerAPI.scala
https://github.com/functortech/functional-streamer/commit/72ec5c
https://github.com/functortech/functional-streamer/blob/72ec5c/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/72ec5c

8. Type Classes

M Interface injection

C 72ec5c to 49259c

8.1 Motivation

Let us have a closer look at how the two functions we use to generate responses changed:

ServerAPI.scala, 72ec5c

43 def serveFile(path: String , contentType: String = "text/html")
: Response =

44 Response(() => FileUtils.openInputStream(new File(s"assets/
$path")), contentType , 200)

45
46 def serveString(str: String , responseCode: Int): Response =
47 Response(() => IOUtils.toInputStream(str , defaultEncoding),

"text/plain", responseCode)

The only useful thing these functions do now is encapsulating the logic to open the streams.
The creation of Response itself is easy, we do not need to encapsulate that. Hence, we should
re-define them to do that only, without Response creation.

The methods in question may look something as follows:

1 def stream(f: File): () => InputStream = ???
2 def stream(s: String): () => InputStream = ???

We can also use Rich Wrappers to inject them into the File and String, so that to call them
with an OOP syntax.

Normally, when two or more types support the same set of operations, this is described via an
interface:

1 trait Streamable {
2 def stream: () => InputStream
3 }

https://github.com/functortech/functional-streamer/compare/72ec5c~1...49259c
https://github.com/functortech/functional-streamer/blob/72ec5c/jvm/src/main/scala/functionalstreamer/server/ServerAPI.scala
https://github.com/functortech/functional-streamer/commit/72ec5c

42 Chapter 8. Type Classes

The benefit here is polymorphism. In order to call stream on an object, it is enough to know
that it implements Streamable interface. Hence, better abstraction of our application logic:

1 def f(target: Streamable): Unit = {
2 target.stream
3 }

The problem is, how do we define an interface-like construct to enable such a polymorphism?
Let us have a look at the two cases: the def stream[T](obj: T): () => InputStream and
the one where this method is injected via Rich Wrappers into multiple types.?

8.2 Solution

8.2.1 Without Rich Wrappers
For the polymorphism, we need to declare the polymorphic operations in question. If we declare it
as in the trait above, though, we won’t be able to make the File and String types implement the
interface.

The next best thing to do is not to store the operations in question in the class definitions
themselves, but as separate objects:

Streamable.scala, 49259c

6 trait Streamable[A] {
7 def stream(a: A): () => InputStream
8 }

An instance of Streamable[A] is a bundle of certain operations supported by A. Just a conve-
nient place to store them together.

Now, whenever we need to call obj.stream on obj: A, all we need to know about A is that
there is a Streamable[A] for this type. “We know there is a Streamable[A] instance for A” can
be expressed with implicit values:

1 def f[T](target: T)(implicit streamable: Streamable[T]): Unit
= {

2 streamable.stream(target)
3 }

What you can see above is called an implicit argument. Every method or constructor, implicit
or explicit, can optionally have the last argument group declared as implicit. This means that
you don’t need to pass them explicitly (obviously), but the compiler will look they up for you in the
implicit scope. All you need to do is to put the desired values for them on scope by importing them.

The code above is polymorphic on T. All we need to know about T is that there is a Streamable[T]
object, which is a bundle of certain operations for it.

Streamable[T] is called a type class. You can think about it as a trait defining an entire class
of types that support a certain operation. Type classes are interfaces of functional programming.

8.2.2 With Rich Wrappers
We have previously seen how the Rich Wrapper pattern can be used to inject new methods into
classes. We can use it again, to inject entire interfaces. Type classes, that is:

Streamable.scala, 49259c

19 implicit class StreamableOps[A](a: A)(implicit typeclass:
Streamable[A]) {

https://github.com/functortech/functional-streamer/blob/49259c/jvm/src/main/scala/functionalstreamer/server/Streamable.scala
https://github.com/functortech/functional-streamer/commit/49259c
https://github.com/functortech/functional-streamer/blob/49259c/jvm/src/main/scala/functionalstreamer/server/Streamable.scala
https://github.com/functortech/functional-streamer/commit/49259c

8.3 Implementation 43

20 def stream: () => InputStream = typeclass.stream(a)
21 }

Here, we see an example of an implicit argument to a constructor.
StreamableOps, hence, is a rich wrapper, polymorphic on the type A. It is capable of injecting

its methods in any type A as long as a Streamable[A] is present in scope.
For other types, the Streamable[A] will not be found and hence it will not be possible to call

the conversion. The logic of the injected stream method is delegate do Streamable[A].
With this Rich Wrapper in scope, we can write the code as follows:

1 def f[T](target: T)(implicit streamable: Streamable[T]): Unit
= {

2 target.stream
3 }

The polymorphism on T is the same as without Rich Wrappers, but now we have the nice OOP
syntax.

8.2.3 Putting it all together: the Type class pattern
The approach described in the two sections above forms a pattern. As a rule, a type class is
composed of:

• A trait with one or more type arguments (the types the type class is defined for) and the
operations on these types.

• A companion object with some convenience methods and default implementations. A
common convenience method is def apply[T] = implicitly[Typeclass[T]], where
Typeclass is the type class in question. This way, you can easily get instances of the type
class via writing Typeclass[T] instead of implicitly[Typeclass[T]]. implicitly is
a method defined in scala.Predef (which is imported automatically by the compiler) that
searches an implicit value of the given type in the implicit scope.

• The syntactic sugar defined either as an implicit class, or an ordinary class (trait) and an
implicit conversion from T to that class, provided there is a type class implementation for T:
def toOps[T](implicit tc: Typeclass[T]) = ???

8.3 Implementation

Next step is to inject Streamable interface into String and File by implementing type class
instances for them:

Streamable.scala, 49259c

10 object Streamable {
11 implicit val streamableFile: Streamable[File] = f =>
12 () => FileUtils.openInputStream(f)
13
14 implicit val streamableString: Streamable[String] = str =>
15 () => IOUtils.toInputStream(str , defaultEncoding)
16 }

Since the trait contains only one method and we are working in Java 8, we can implement
the entire trait with a simple lambda. This lambda will be interpreted as that single method’s
implementation by Java 8, and the trait will be created.

After we implemented that, we can rewrite the server handler as follows:

https://github.com/functortech/functional-streamer/blob/49259c/jvm/src/main/scala/functionalstreamer/server/Streamable.scala
https://github.com/functortech/functional-streamer/commit/49259c

44 Chapter 8. Type Classes

MainJVM.scala, 49259c, @@ -6,9 +10,13 @@
6 object MainJVM {
7 + implicit class AssefFileString(str: String) {
8 + def assetFile: File = new File(s"assets/$str")
9 + }

10 +
11 def main(args: Array[String]): Unit = {
12 val server = createServer (8080) {
13 - case GET -> "/" => serveFile ("html/

index.html")
14 - case GET -> "/js/application.js" => serveFile ("js/

application.js", "application/javascript ")
15 + case GET -> "/" => Response ("html/

index.html" .assetFile.stream , "text/html")
16 + case GET -> "/js/application.js" => Response ("js/

application.js". assetFile.stream , "application/javascript
")

17 }
18 server.start()
19 }
20 }

And the default error handler becomes:

ServerAPI.scala, 49259c, @@ -41,7 +40,1 @@
41 - val defaultErrorHandler: TotalHandler = _ => serveString ("

Not Found", 404)
42 -
43 - def serveFile(path: String , contentType: String = "text/

html"): Response =
44 - Response(() => FileUtils.openInputStream(new File(s"

assets/$path")), contentType , 200)
45 -
46 - def serveString(str: String , responseCode: Int): Response

=
47 - Response(() => IOUtils.toInputStream(str ,

defaultEncoding), "text/plain", responseCode)
48 + val defaultErrorHandler: TotalHandler = _ => Response ("Not

Found".stream , responseCode = 404)

We have removed the unnecessary now serveFile and serveString methods.

8.4 Implicit Scope
The rules for the implicit scope are complex, but here are some rules of thumb on what ends up on
the implicit scope1:

• Imported implicit values.
• Implicit values defined in the companion objects of the target type. For example, if you need

an implicit value of type A[B[C[D]]], the companions of A, B, C and D will be searched. This
1More information on how the implicits are looked up can be found here: https://github.com/milessabin/export-

hook/blob/master/README.md

https://github.com/functortech/functional-streamer/blob/49259c/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/49259c
https://github.com/functortech/functional-streamer/blob/49259c/jvm/src/main/scala/functionalstreamer/server/ServerAPI.scala
https://github.com/functortech/functional-streamer/commit/49259c
https://github.com/milessabin/export-hook/blob/master/README.md
https://github.com/milessabin/export-hook/blob/master/README.md

8.5 Conclusion 45

should explain why we defined the Streamable implementations under the Streamable
companion object.

• If you can call an implicit value or conversion without specifying its fully qualified name,
most probably it is on the implicit scope.

8.5 Conclusion
Rich Wrappers allow you to inject methods into types. Type classes allow you to inject interfaces.

Sometimes you want several classes to support the same set of methods. This rises a natural
desire to call them polymorphically.

In OOP, if several classes define the same set of methods, they are abstracted to an interface.
In case the methods are not defined by the classes but are injected with Rich Wrappers,

polymorphism is achieved via type classes.
In essence, type class instances are objects used as bundles of methods supported by some types.

You can also have them in plain Java (e.g. Comparator that defines an operation of comparison
over some type). In Scala, the implicits mechanism allows to almost completely hide the fact that
your are using them, hence they are used much wider in this language than in Java.

https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

III
9 Ajax with Circe . 49
9.1 Protocol
9.2 Client side
9.3 Server side

10 Effect Types . 53
10.1 Motivation
10.2 Intuition
10.3 Conclusion

11 Monads . 57
11.1 Motivation
11.2 Solution
11.3 Intuition
11.4 Implementation

12 Cats . 61
12.1 Motivation
12.2 Solution

Client Side

9. Ajax with Circe

M Technical: Set up the basic Ajax capability

C 27b0b0 to 7a3188

Our server looks good enough. It is time to start the work on the client side. Since we are
building a single-page application, the first step for the client-side should be Ajax implementation.
We will start from the simplest Ajax protocol possible - the echo protocol, where the server should
respond with the same message as the client sent it.

9.1 Protocol

A natural way to model the communication protocol is the case classes:

Protocol.scala, 27b0b0

1 package functionalstreamer
2
3 case class EchoReq (str: String)
4 case class EchoResp(str: String)

We will also need the way to convert these case classes to JSON String. Circe1, the JSON
library for Scala, is convenient for these purposes, so we will include it in our build:

build.sbt, 27b0b0

19 , libraryDependencies ++= Seq(
20 "com.lihaoyi" %%% "scalatags" % ScalaTags
21
22 , "io.circe" %%% "circe -core" % Circe
23 , "io.circe" %%% "circe -generic" % Circe
24 , "io.circe" %%% "circe -parser" % Circe
25)

1https://circe.github.io/circe/

https://github.com/functortech/functional-streamer/compare/27b0b0~1...7a3188
https://github.com/functortech/functional-streamer/blob/27b0b0/shared/src/main/scala/functionalstreamer/Protocol.scala
https://github.com/functortech/functional-streamer/commit/27b0b0
https://github.com/functortech/functional-streamer/blob/27b0b0/build.sbt
https://github.com/functortech/functional-streamer/commit/27b0b0
https://circe.github.io/circe/

50 Chapter 9. Ajax with Circe

Circe give us two methods: decode[T](x: String): Either[CirceError, T] - to decode
a string to some case class T, and toJson, which is injected to all the case classes and sealed traits
to convert them to JSON strings.

All this comes for free, you do not need to implement anything. This is achieved via type
classes and rich wrappers we have seen previously. Case classes are analysed on compile time and
their JSON representation is inferred via it.

9.2 Client side

The idea is that the client should send an Ajax request to a certain server endpoint, wait for a
response and update the page accordingly.

First we need to do some Circe imports:

MainJS.scala, 27b0b0

11 import io.circe.parser.decode
12 import io.circe.generic.auto._, io.circe.syntax._ // Implicit

augmentations & type classes

As you recall, type classes and rich wrappers rely on implicits extensively. These, and the
capabilities to infer JSON representations of classes on compile time (also implicits and probably
some macros) are imported here.

After that, it is easy to implement the required behavior using standard ScalaJS capabilities:

MainJS.scala, 27b0b0

15 def main(): Unit = window.onload = { _ =>
16 val placeholder = document.getElementById("body -placeholder"

)
17
18 val req = EchoReq("Hello from Ajax")
19
20 Ajax.post(url = "/api", data = req.asJson.noSpaces)
21 .map { req => decode[EchoResp](req.responseText) }
22 .flatMap {
23 case Right(resp) => Future.successful(resp)
24 case Left (err) => Future.failed (err)
25 }
26 .onComplete {
27 case Success(EchoResp(str)) => placeholder.innerHTML =

str
28 case Failure(err: AjaxException) => placeholder.

innerHTML = err.xhr.responseText
29 case Failure(err) => placeholder.innerHTML = s"Unknown

error: ${err.toString}"
30 }
31 }

Ajax.post sends a post request to the endpoint and returns a Future of response. We than
map the Future to extract and decode the JSON response into a case class.

A catch here is that Circe’s decode method may fail, hence it returns an Either as was
discussed above. If we try to handle Either from onComplete, we’ll end up with a nested match

https://github.com/functortech/functional-streamer/blob/27b0b0/js/src/main/scala/functionalstreamer/MainJS.scala
https://github.com/functortech/functional-streamer/commit/27b0b0
https://github.com/functortech/functional-streamer/blob/27b0b0/js/src/main/scala/functionalstreamer/MainJS.scala
https://github.com/functortech/functional-streamer/commit/27b0b0

9.3 Server side 51

statement: first we need to match for Ajax errors that Future may contain, then - for Circe errors
the successful Future’s result may contain.

To avoid this spaghetti, we flatMap the Future, failing it if the underlying Either contains
an error. Since we are effectively converting an Either to a Future in that flatMap, we can as
well inject a convenience method into Either:

package.scala, 7a3188

1 import scala.concurrent.Future
2
3 package object functionalstreamer {
4 implicit class EitherToFuture[A <: Throwable , B](e: Either[A

, B]) {
5 def toFuture: Future[B] = e match {
6 case Right(b) => Future.successful(b)
7 case Left (e) => Future.failed (e)
8 }
9 }

10 }

Then we can simplify the client code as follows:

MainJS.scala, 7a3188, @@ -20,11 +19,7 @@

20 Ajax.post(url = "/api", data = req.asJson.noSpaces)
21 - .map { req => decode[EchoResp](req.responseText) }
22 - .flatMap {
23 - case Right(resp) => Future.successful(resp)
24 - case Left (err) => Future.failed (err)
25 - }
26 + .map(_.responseText).map(decode[EchoResp]).flatMap(_.

toFuture)
27 .onComplete {
28 case Success(EchoResp(str)) => placeholder.innerHTML =

str
29 case Failure(err: AjaxException) => placeholder.

innerHTML = err.xhr.responseText
30 case Failure(err) => placeholder.innerHTML = s"Unknown

error: ${err.toString}"
31 }

9.3 Server side

Finally, we need to add the Ajax endpoint to the server handler:

MainJVM.scala, 27b0b0

26 case e @ POST -> "/api" =>
27 val req = IOUtils.toString(e.getRequestBody , defaultEncoding

)
28
29 val respOrError: Either[CirceError , Response] =
30 decode[EchoReq](req)

https://github.com/functortech/functional-streamer/blob/7a3188/shared/src/main/scala/functionalstreamer/package.scala
https://github.com/functortech/functional-streamer/commit/7a3188
https://github.com/functortech/functional-streamer/blob/7a3188/js/src/main/scala/functionalstreamer/MainJS.scala
https://github.com/functortech/functional-streamer/commit/7a3188
https://github.com/functortech/functional-streamer/blob/27b0b0/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/27b0b0

52 Chapter 9. Ajax with Circe

31 .map { case EchoReq(str) =>
32 Response(EchoResp(s"Echo response: $str").asJson.

noSpaces.stream , application.json)
33 }
34
35 respOrError match {
36 case Right(resp) => resp
37 case Left (err) =>
38 Response(s"Error occurred while parsing JSON request: ${

err.toString}".stream , responseCode = 400)
39 }

The code above:
• Reads the request body - a request JSON.
• Decodes it into the model case class.
• If the decoding went fine, responds with the response created based on the request. Otherwise,

respond with an error.
Notice that you can call map on Either. map works on Right (which contains successful result

by default in most libraries). If this Either is Left, it is unaffected by map. flatMap behaves the
same way.

10. Effect Types

M Theory. From a function, one should return not only the value computed by it, but also the information
about what happened inside - if this information is relevant.

10.1 Motivation

Circe’s decode[A](x: A) returns Either[Error, A]. ScalaJS’s Ajax.post returns Future[XMLHttpRequest]1.
Why do they all return a result wrapped in some higher-kinded type?

Higher-kinded types are often used to encapsulate side effects that happen during function
execution.

10.1.1 Side effects revisited
Let us recall our definition of side effects: these are instructions that are executed in a function that
can affect the environment outside the function.

Also recall how we separated the result of function execution into two aspects: the known
(the returned value) and the unknown (the side effects that happen withing). The unknown part
is undesirable. Hence the motivation to eliminate it by making functions pure. A pure function’s
execution result is described only by its return type, since the side effects are absent.

Another way to think about the effects is as of "surprises" the function may have. A pure
function discloses full information on what it did in its return type, no surprises. With the impure
function, the story is different. Here are some examples of the surprises it may have:

• Exceptions. You can not tell a function throws them by its return type. In Java, functions
must declare that they throw exceptions, but not in Scala. If a function throws an exception
and you do not expect it, it may crash your application. You become surprised.

• Optionality - when a function does not return a value under certain circumstances. Java APIs
usually return null in such cases. You can not guess such a function by its return type. If
it returns null, this may cause NullPointerExceptions when you try to use that value
outside the function. And you become surprised.

• Computations on another thread. When you call a function that creates a new thread with
a computation and immediately returns, you most probably need to register a callback

1https://www.scala-js.org/api/scalajs-dom/0.9.0/#org.scalajs.dom.ext.Ajax$

https://www.scala-js.org/api/scalajs-dom/0.9.0/#org.scalajs.dom.ext.Ajax\protect \T1\textdollar

54 Chapter 10. Effect Types

somewhere to collect the result. This is not be obvious if the function returns a Unit. If you
don’t know what it does, you don’t register the callback, the program goes wrong and you
become surprised.

10.1.2 Encapsulating side effects with higher-kinded types
The trick with higher-kinded types is to declare what happened within a function in the value it
returns. Here is how the above effects can be encapsulated in Scala higher-kinded types:

• Exceptions - Try[A] or Either[T <: Throwable, A]. A is the value the function origi-
nally returns. The fact that it is under Try or Either means not only A is returned, but also
some data about how the computation went. You can compare it to how Java declares its
exceptions with throws in a method’s signature. throws is a construct specifically intro-
duced for exceptions, however, and higher-kinded types can be generalised to any effect.
In any case, if you get a Try or Either from a function, you no longer can use underlying
A without acknowledging the fact that the computation may have gone wrong. You are no
longer surprised.

• Optionality - Option[A]. If the function is not supposed to return a value, it returns None,
otherwise - Some[A]. Again, you can not access A without acknowledging the possibility of
None, and are no longer surprised.

• Async computations - Future[A]. As opposed to Unit, you clearly see what happened: an
async computation resulting in A. Also you know where to set the callback - on the Future.

The general pattern here is that pure functions return F[A] instead of A. A is the result we
are computing, and F - the effect type - contains the data of what happened during the function
execution.

In you program this way, you will encounter a lot of functions of the form A => F[B].

10.2 Intuition
10.2.1 What is F[A]?

It is important to keep in mind that higher-kinded types is a very abstract notion. However, most of
the times (but not always!) you will be correct when thinking of them as of structures composed of
A.

Sometimes the structures are interesting by themselves (as in Lists or Maps), other times they
provide supplementary data about how the computation went (as in Either[Error, A]).

In case of representing effects, F[A] is a structure that contains the result A, as well as the data
about the computation written in F.

Again, this intuition is to be used with caution. Not all F[A] can be understood as structures, if
it does not work for you, you should seek another analogy.

10.2.2 What is A => F[B]?
The same thing as A => B, but it writes all the effects that happen in the process of execution into
structure F.

10.2.3 What about the Onion architecture?
The Onion architecture prevents functions from invoking any effects, just asks them for a description
of what they want to do. It executes this description from a single place.

Effect types, in contrast, execute side effects from the function, but they are no longer unknown
to the user. They are fully described by the returned structure F.

Some things to keep in mind when deciding where you need an Onion, effect types or a mixture
of both:

10.3 Conclusion 55

• Onion DRYs effect execution, and hence introduces the dependency on the layer that executes
effects. May not always be desirable.

• Some effects may have too little in common or are handled too easily (like Either or Option,
where every case’s handling is different). Onion may introduce an overhead of an additional
layer.

• Some effects can not be easily by an effect type because of their nature. For example, a
database transaction, or a process of writing to a file system. You can capture the effect
of errors during this operation, but how do you encapsulate the effect of writing itself?
Remember that we consider side effects as something that modifies the environment beyond
the scope of the function. In case of an exception or an error, you can eliminate such a
modification via Either (the application will no longer crush under a runtime exception).
But writing to the outside world is a modification outside the scope of the function by
definition. So probably Onion is more appropriate in this case: the functions should compute
what they need to write, but the actual writing is done in a single, strictly specified place.

10.3 Conclusion
Impure functions do not disclose full information about what happened within to the user. They
only disclose the result of their computation. Pure functions disclose the result, as well as the data
about what happened during the computation.

11. Monads

M Philosophy of purity combined with modularity results in many functions of type A => F[B]. Monads
help to execute A => F[B] and B => F[C] sequentially.

C 7a3188 to e88224

11.1 Motivation

11.1.1 Problem: Concrete

Following this logic and seen the example of Circe, we may see our extensive usage of Apache
Commons IO (which is a Java API) under a new angle. It is side effectful.

For example, take this line from the server code:

MainJVM.scala, 7a3188

1 val req = IOUtils.toString(e.getRequestBody , defaultEncoding)

According to the javadoc1, IOUtils.toString throws IOException and NullPointerException.
We do not know how the underlying Sun’s server is implemented, so it is quite possible that one
of these can occur. We will be surprised when suddenly the server becomes inaccessible due to a
runtime exception crushing the application.

We can make it safer by following the Functional paradigm: not only return whatever needs
to be computed, but also the data of whether an exception happened. We can do this with errors
similarly to how Circe does it - via Either:

MainJVM.scala, 9de0d8, @@ -26,8 +28,12 @@

26 case e @ POST -> "/api" =>
27 - val req = IOUtils.toString(e.getRequestBody ,

defaultEncoding)
28 -
29 - val respOrError: Either[CirceError , Response] =
30 - decode[EchoReq](req)
31 - .map { case EchoReq(str) =>

1https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html

https://github.com/functortech/functional-streamer/compare/7a3188~1...e88224
https://github.com/functortech/functional-streamer/blob/7a3188/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/7a3188
https://github.com/functortech/functional-streamer/blob/9de0d8/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/9de0d8
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/IOUtils.html

58 Chapter 11. Monads

32 - Response(EchoResp(s"Echo response: $str").asJson.
noSpaces.stream , application.json)

33 - }
34 + val reqOrError: Either[Throwable , String] =
35 + Try { IOUtils.toString(e.getRequestBody ,

defaultEncoding) }. toEither
36 +
37 + val respOrError: Either[Throwable , Response] =
38 + reqOrError.flatMap { req =>
39 + val decodedOrError: Either[CirceError , EchoReq] =

decode[EchoReq](req)
40 + decodedOrError
41 + .map { case EchoReq(str) =>
42 + Response(EchoResp(s"Echo response: $str").asJson

.noSpaces.stream , application.json)
43 + }
44 + }

However, respOrError depends on the value computed by reqOrError. Two computations,
both have an error effect, one of them depends on the result of the other. How do we combine them?

11.1.2 Problem: General
If we make all our functions pure, they will all have a form of A => F[B]. Given that most
applications are modular, we’ll end up with many such functions. Since an application is a sum of
its modules, we’ll need to combine these functions: call B => F[C] on the result of A => F[B]
for example.

How do we do that?

11.2 Solution

11.2.1 flatMap

The answer is flatMap. Given an F[A] and a function A => F[B], flatMap is capable of running
it on the result of the first F to produce F[B].

For example, if type F[A] = Either[Error, A], flatMap is capable of running A =>
Either[Error, B] on Either[Error, A]’s result to produce Either[Error, B]. Remember
that Either is right-biased: map and flatMap run on its right side, while ignoring the left one.

If there is a function A => B, you can run it on F[A] via map.

11.2.2 Monads
The majority of the effect types F[_] you encounter are so-called Monads. A Monad is something
that has a flatMap function similar to the one we saw in Either and Future. Also a Monad has a
way to lift any value A to a monad F[A]: def pure[A](a: A): F[A]).

A flatMap is defined as follows:

1 def flatMap[A, B](fa: F[A], f: A => F[B]): F[B]

Given a monad F[A] and a function that takes its result type and computes another monad,
flatMap is capable to run that function f on the result of fa.

Another way to view flatMap is to see what happens if we define it as follows:

1 def flatMap[A, B](f: A => F[B]): F[A] => F[B]

11.3 Intuition 59

Essentially that is the same code as above: flatMap takes a function f and returns a function
that takes a monad F[A] to create F[B]. But if you view it this way, flatMap “lifts” a function f:
A => F[B] to its monadic version fm: F[A] => F[B]:

Figure 11.1: FlatMap as a function lift

So, if you have a bunch of functions of the shape A => F[B], you can turn them all into F[A]
=> F[B] and compose them as ordinary functions.

An important catch here is that the monads are used for sequential, dependent computations:
if you have A => F[B] and B => F[C] and you want to compose them, B => F[C] depends on
the result of A => F[B] and can not be computed until this result is known. This will become
important when we will be covering the Applicative type class.

11.2.3 Monad type class

Some types may define flatMap and map, and some may not (by the way, if you have flatMap:
(A => F[B]) => (F[A] => F[B]) and pure: A => F[A] - the definition of Monad - it is easy
to define map: (A => B) => (F[A] => F[B]). Compose pure and A => B to get A => F[B]).
For the types that do not define them but would benefit from them, it is a common practice to inject
them via the type class technique discussed previously.

11.3 Intuition

11.3.1 What is F[A] => F[B]?

It is like A => F[B], but the input is assumed to be computed by another computation with possible
side effects. These effects are written into F.

Hence, F[A] => F[B] must do just the same thing as A => F[B] (compute B and write side
effects to F), plus one more: describe how to deal with the input F when computing the output F.
You need to merge the information about side effects of the input computation with the information
you will create when computing F[B]. Some examples:

• If F is Either and the input is Left (error), we do not need to perform the computation, just
return the error. If it is Right, we need to extract the result and run the computation. The
resulting Either thus contains the input computation error, or the output computation error,
or the result.

• If F is Future, we need to wait for the result of the input first. The resulting Future thus is
a combination of the time you need to wait for the input and the output to be computed.

11.4 Implementation

11.4.1 Naive

We can use flatMap to help our problem as follows:

60 Chapter 11. Monads

MainJVM.scala, 9de0d8

32 val respOrError: Either[Throwable , Response] =
33 reqOrError.flatMap { req =>
34 val decodedOrError: Either[CirceError , EchoReq] = decode[

EchoReq](req)
35 decodedOrError
36 .map { case EchoReq(str) =>
37 Response(EchoResp(s"Echo response: $str").asJson.

noSpaces.stream , application.json)
38 }
39 }

Preventing exceptions is nice, but we have ended up with spaghetti code that is hard to read
here. Nested flatMap and map are not nice, but it sounds like in functional programming, every
new A => F[A] function you compose adds a new layer of nesting.

11.4.2 Monadic flow
Fortunately, Scala mitigates this with for:

MainJVM.scala, e88224

1 case e @ POST -> "/api" =>
2 val responseOrError: Either[Throwable , Response] = for {
3 req <- Try { IOUtils.toString(e.getRequestBody ,

defaultEncoding) }. toEither
4 decoded <- decode[EchoReq](req)
5 response = Response(EchoResp(s"Echo response: ${decoded.

str}").asJson.noSpaces.stream , application.json)
6 } yield response
7
8 responseOrError match {
9 case Right(resp) => resp

10 case Left (err) =>
11 Response(s"Error occurred while parsing JSON request: ${

err.toString}".stream , responseCode = 400)
12 }

In Scala, for is just a syntactic sugar that translates to flatMap and map calls. The rewriting
above is equivalent to the previous version.

So, with for you are able to write your ordinary sequential code with each line containing a
separate statement, while working under the monad. And, hence, not only computing the end result,
but also collecting the data about how the computation went in process.

https://github.com/functortech/functional-streamer/blob/9de0d8/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/9de0d8
https://github.com/functortech/functional-streamer/blob/e88224/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/e88224

12. Cats

M A library of type classes. Mostly needed to help with higher kinded types: F[A] and A => F[B].

C e88224

12.1 Motivation

There is a method called merge injected in Either by MergableEither1 rich wrapper. Given an
Either[A, A], it returns A whichever A it contains - left or right.

We could replace the match statement with it when handling the API requests from the server
side:

MainJVM.scala, 588767, @@ -34,5 +37,3 @@

35 - responseOrError match {
36 - case Right(resp) => resp
37 - case Left (err) =>
38 - Response(s"Error occurred while parsing JSON request:

${err.toString }".stream , responseCode = 400)
39 - }
40 + responseOrError.leftMap { err =>
41 + Response(s"Error occurred while parsing JSON request: ${

err.toString }".stream , responseCode = 400)
42 + }.merge

Either represents a result of a computation of Response value that can result in errors. The
idea is to map the error (the Left side) to a response to get Either[Response, Response]. And
then merge it.

The problem is, we do not have leftMap defined on Either. Out of the box, we can only map
its right hand side.

1http://www.scala-lang.org/api/current/scala/util/Either$$MergeableEither.html

https://github.com/functortech/functional-streamer/commit/e88224
https://github.com/functortech/functional-streamer/blob/588767/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/588767
http://www.scala-lang.org/api/current/scala/util/Either\protect \T1\textdollar \protect \T1\textdollar MergeableEither.html

62 Chapter 12. Cats

12.2 Solution
12.2.1 Cats - the library for Functional Programming

Let us recall two ideas we have discussed recently:
• Type classes are interfaces you can inject into existing types without the need to be in control

of their definition.
• Since functional programming relies on flatMap extensively to compose pure effectful

functions2 on the type level, a very popular use case for the type classes is a Monad.
If type classes are not dependent on a code you may want to inject them in, would it not make

sense if someone implemented a library of type classes?
If the Monad type class is so useful for functional programming with higher-kinded types,

maybe there are others? If there are others, maybe there are libraries of type classes for functional
programming, to simplify handling these F[A]’s?

Turns out, there are. One of them is Cats3. It defines many type classes, including the Monad4,
that you can inject into your types. Also it provides implementations of these type classes for the
standard types, such as Either.

12.2.2 Functor
A fancy name for something with a map: (A => B) => (F[A] => F[B]) method defined on it
is Functor.

12.2.3 Bifunctor
This works well for F[A], but if you have a type with two holes - F[A, B], such as our Either -
you may want a Bifunctor. A Bifunctor5 is a fancy name for something with two holes where
you can map both of them:

1 def bimap[A, B, C, D](fab: F[A, B])(f: (A) => C, g: (B) => D):
F[C, D]

It is easy to derive map and leftMap from bimap by providing the identity function to the
hole you are not interested in.

Now let us inject Bifunctor into Either and make the code above work:

MainJVM.scala, 588767
17 import cats.instances.either.catsStdBitraverseForEither //

Type class for Bifunctor (which is a superclass of
Bitraverse we are importing)

18 import cats.syntax.bifunctor.toBifunctorOps //
Implicit augmentation of types for which Bifunctor is
available with Bifunctor operations

As you recall, to inject a type class you need an instance of it and the rich wrapper for the
syntax. Both of them should be on the implicit scope.

Cats stores the rich wrappers for its type classes in the cats.syntax package, and the instances
of the type classes for certain standard types in the cats.instances package. It is easy to find the
ones you need via scaladoc6.

2“pure effectful” is used in the sense that all the effects that happen in the function are fully reflected in its return
value.

3The other one is ScalaZ, which gradually declines in popularity.
4http://static.javadoc.io/org.typelevel/cats-core_2.12/0.9.0/cats/Monad.html
5http://static.javadoc.io/org.typelevel/cats-core_2.12/0.9.0/cats/functor/Bifunctor.html
6http://javadoc.io/doc/org.typelevel/cats-core_2.12/0.9.0

https://github.com/functortech/functional-streamer/blob/588767/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/588767
http://static.javadoc.io/org.typelevel/cats-core_2.12/0.9.0/cats/Monad.html
http://static.javadoc.io/org.typelevel/cats-core_2.12/0.9.0/cats/functor/Bifunctor.html
http://javadoc.io/doc/org.typelevel/cats-core_2.12/0.9.0

12.2 Solution 63

After you’ve added these imports to the MainJVM.scala, the code with the leftMap should
work.

IV
13 More Onions . 67

14 Browsing the Directories 71
14.1 Basics
14.2 Client Side
14.3 Directory Rendering

15 Applicative . 75
15.1 Motivation
15.2 Solution
15.3 Intuition
15.4 Implementation
15.5 Conclusion

16 Traverse . 81
16.1 Motivation
16.2 Solution
16.3 Implementation

17 Browsing the Videos 83

18 Monad Transformers 85
18.1 Motivation
18.2 Solution
18.3 Implementation

19 Streaming the Videos 89

20 Afterword . 91

Video Streaming

13. More Onions

M Technical: Refactor the client-side Ajax input-output infrastructure to the Onion Architecture

C 5b6cb98 to d9a35c

We will want to support many types of AJAX requests. Hence, it is reasonable to decouple their
processing from the server handler:

MainJVM.scala, 5b6cb98 to d9a35c, @@ -43,2 +45,4 @@

43 - def handleApi(request: EchoReq): EchoResp =
44 - EchoResp(s"Echo response: ${request.str}")
45 + def handleApi(request: APIRequest): Either[Throwable ,

APIResponse] = request match {
46 + case EchoReq(str) => Right(EchoResp(s"Echo response: $str

"))
47 + case _ => Left(ServerError(s"Unknown JSON API request:

$request "))
48 + }

Notice that we allow errors to happen by specifying Either as return type. This costs us
nothing since we are using the monadic flow under Either in the endpoint handler. The handler
itself can be modified as follows:

MainJVM.scala, 5b6cb98 to d9a35c, @@ -30,16 +31,19 @@

30 case e @ POST -> "/api" =>
31 (for {
32 req <- Try { IOUtils.toString(e.getRequestBody ,

defaultEncoding) }. toEither
33 - decoded <- decode[EchoReq](req)
34 - respJson = handleApi(decoded)
35 + decoded <- decode[APIRequest](req)
36 + respJson <- handleApi(decoded)

At the client side, we will be calling the AJAX API extensively. Hence, we need to abstract the
API calling logic from the processing of its results.

https://github.com/functortech/functional-streamer/compare/5b6cb98~1...d9a35c
https://github.com/functortech/functional-streamer/blob/d9a35c/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/compare/5b6cb98~1...d9a35c
https://github.com/functortech/functional-streamer/blob/d9a35c/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/compare/5b6cb98~1...d9a35c

68 Chapter 13. More Onions

Further, the processing of the results involve manipulation of the page. This is an effect. We can
draw parallels with what we have seen on the server side. There, we had a need to produce effects
from request handlers, saw the dangers of this approach and decided to use the Onion architecture.
It is a good idea to apply it here too, since the situations are similar.

ClientOperation.scala, d9a35c

1 package functionalstreamer
2
3 sealed trait ClientOperation
4 case class RenderString(str: String) extends ClientOperation

First, we define the types describing our effects. So far, we only need to render a String.
Next, we apply the Onion architecture to the client side code:

MainJS.scala, d9a35c

14 object MainJS extends JSApp {
15 def placeholder = document.getElementById("body -placeholder"

)
16
17 def main(): Unit = window.onload = { _ =>
18 ajax(EchoReq("Hello from Ajax")).onComplete(renderResponse

)
19 }
20
21 def handleApi(response: APIResponse): Either[Throwable ,

ClientOperation] = response match {
22 case EchoResp(str) => Right(RenderString(str))
23 case _ => Left(ClientError(s"Can not handle $response"))
24 }
25
26 def ajax(request: APIRequest): Future[ClientOperation] =
27 for {
28 response <- Ajax.post(url = "/api", data = request.

asJson.noSpaces)
29 respText = response.responseText
30 decoded <- decode[APIResponse](respText).toFuture
31 operation <- handleApi(decoded).toFuture
32 } yield operation
33
34 def renderResponse(response: Try[ClientOperation]): Unit =

response match {
35 case Success(RenderString(str)) => placeholder.innerHTML =

str
36
37 case Failure(err: AjaxException) => placeholder.innerHTML

= s"Ajax exception: ${err.xhr.responseText}"
38 case Failure(err) => placeholder.innerHTML = s"Unknown

error: ${err.toString}"
39 }
40 }

https://github.com/functortech/functional-streamer/blob/d9a35c/js/src/main/scala/functionalstreamer/ClientOperation.scala
https://github.com/functortech/functional-streamer/commit/d9a35c
https://github.com/functortech/functional-streamer/blob/d9a35c/js/src/main/scala/functionalstreamer/MainJS.scala
https://github.com/functortech/functional-streamer/commit/d9a35c

69

Note how ajax method computes the operation to be performed in a Future, but does
not do anything. The logic to handle the operation and produce effects is concentrated under
renderResponse.

14. Browsing the Directories

M Technical: Implementing the capability to browse file system via Ajax

C d118ba to f48f9c

Now we are ready for the next step: let us view the file system from the web application.
On the client side, let us show the file system us a list of files and folders. Folders should be

clickable. On click, the contents of that folder should be retrieved and the page should display that
content.

14.1 Basics

First, let us define the model and the protocol:

Model.scala, f48f9c

1 package functionalstreamer
2
3 case class FileModel(path: String , name: String , tpe: FileType

)
4
5 sealed trait FileType
6 object FileType {
7 case object Directory extends FileType
8 case object Misc extends FileType
9 }

Protocol.scala, f48f9c

1 package functionalstreamer
2
3 sealed trait APIRequest
4 case class DirContentsReq(path: String) extends APIRequest
5
6 sealed trait APIResponse

https://github.com/functortech/functional-streamer/compare/d118ba~1...f48f9c
https://github.com/functortech/functional-streamer/blob/f48f9c/shared/src/main/scala/functionalstreamer/Model.scala
https://github.com/functortech/functional-streamer/commit/f48f9c
https://github.com/functortech/functional-streamer/blob/f48f9c/shared/src/main/scala/functionalstreamer/Protocol.scala
https://github.com/functortech/functional-streamer/commit/f48f9c

72 Chapter 14. Browsing the Directories

7 case class DirContentsResp(contents: List[FileModel], parent:
Option[FileModel]) extends APIResponse

Now let us define the server-side handler for that request:

MainJVM.scala, d118ba to f48f9c, @@ -45,5 +63,11 @@

45 def handleApi(request: APIRequest): Either[Throwable ,
APIResponse] = request match {

46 - case EchoReq(str) => Right(EchoResp(s"Echo response: $str
"))

47 + case DirContentsReq(path) =>
48 + for {
49 + contents <- path.file.contents
50 + contentsPaths = contents.map(_.toModel)
51 + maybeParent = path.file.parent.map(_.toModel.copy(

name = ".."))
52 + } yield DirContentsResp(contentsPaths , maybeParent)
53 +
54 case _ => Left(ServerError(s"Unknown JSON API request:

$request"))
55 }

We have injected a bunch of convenience methods in the File class:

MainJVM.scala, f48f9c

30 implicit class FileAPI(file: File) {
31 def contents: Either[Throwable , List[File]] = Try { file.

listFiles }. toEither
32 .filterOrElse(null !=, ServerError(s"Error occurred while

retrieving the contents of the file: $file"))
33 .map(_.toList)
34
35 def toModel = FileModel(file.getAbsolutePath , file.getName ,

file.tpe)
36
37 def tpe: FileType = file match {
38 case _ if file.isDirectory => FileType.Directory
39 case _ => FileType.Misc
40 }
41
42 def parent: Option[File] = Some(file.getParentFile).filter(

null !=)
43 }

14.2 Client Side

Now we need to render the response on the client side, from handleApi method. We expect that
we will also render the contents of the files in the future, so it is convenient to encapsulate the
rendering logic into a separate method view.

https://github.com/functortech/functional-streamer/blob/f48f9c/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/compare/d118ba~1...f48f9c
https://github.com/functortech/functional-streamer/blob/f48f9c/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/f48f9c

14.2 Client Side 73

MainJS.scala, d118ba to f48f9c, @@ 21,4 23,4 @@

21 def handleApi(response: APIResponse): Either[Throwable ,
ClientOperation] = response match {

22 - case EchoResp(str) => Right(RenderString(str))
23 + case resp @ DirContentsResp(files , parent) => view(resp).

map(RenderTag)
24 case _ => Left(ClientError(s"Can not handle $response"))
25 }

We have added a new RenderTag client operation. We will be using Scalatags1 to describe the
HTML views, so we need a separate operation to describe that.

And here is the view itself:

MainJS.scala, f48f9c

28 def view(x: Any): Either[ClientError , HtmlTag] = x match {
29 case DirContentsResp(files , parent: Option[FileModel]) =>
30 for {
31 filesViews <- files.map(view)
32 .foldLeft[Either[ClientError , List[HtmlTag]]](Right(

Nil)) {
33 (listOrError , nextOrError) => for {
34 list <- listOrError
35 next <- nextOrError
36 } yield list :+ next
37 }
38
39 maybeParentView <- parent.map(view) match {
40 case Some(either) => either.map(Some(_))
41 case None => Right(None)
42 }
43 listItems = (maybeParentView ++ filesViews).map { f =>

li(f) }. toList
44 } yield ul(listItems)
45
46 case FileModel(path , name , FileType.Directory) =>
47 Right(button(onclick := ajaxCallback(DirContentsReq(path)

))(name))
48
49 case FileModel(path , name , _) => Right(p(name))
50
51 case _ => Left(ClientError(s"Can not render view: $x"))
52 }

MainJS.scala, f48f9c

77 def ajaxCallback(request: APIRequest): () => Unit =
78 () => ajax(request).onComplete(renderResponse)

We have built it in a modular manner: every fragment of the view is rendered by a separate
case clause, so it becomes easier to compose larger fragments from the smaller ones.

1https://github.com/lihaoyi/scalatags

https://github.com/functortech/functional-streamer/blob/f48f9c/js/src/main/scala/functionalstreamer/MainJS.scala
https://github.com/functortech/functional-streamer/compare/d118ba~1...f48f9c
https://github.com/functortech/functional-streamer/blob/f48f9c/js/src/main/scala/functionalstreamer/MainJS.scala
https://github.com/functortech/functional-streamer/commit/f48f9c
https://github.com/functortech/functional-streamer/blob/f48f9c/js/src/main/scala/functionalstreamer/MainJS.scala
https://github.com/functortech/functional-streamer/commit/f48f9c
https://github.com/lihaoyi/scalatags

74 Chapter 14. Browsing the Directories

We have also build the view with the possibility errors in mind: e.g. when a view for something
was not found. We do not want the errors to be silently logged to the browser console.

Now, looking at the spaghetti under DirContentsResp you probably regretted you have ever
entertained the idea of using functional programming in your projects. Hang on.

Let us first see what is going on under DirContentsResp.

14.3 Directory Rendering
14.3.1 Contents

We have a list of files to render as an unordered list, and the link to the parent directory on top,
if it is present. Each file can be rendered by a separate call to view that returns an Either. The
rendering of DirContentsResp itself should return Either.

When we need to produce a monad out of the values of several others, it is a familiar situation.
We need to combine them with a monadic flow for.

However, the model of the directory contents is a List. We can map it to the views, but then we
will get List[Either[Error, File]]. And we do not know how to combine a List of monads
under a monadic flow - not in the nice way.

The next best thing to do is to compute an Either[Error, List[HtmlTag]]. In an ordinary
monadic flow, we have every monad’s result stored in a certain variable (e.g. a <- b extracts
the result of b to a). If we compute an Either[Error, List[HtmlTag]], we won’t have every
HtmlTag referenced by a separate variable, but we will have a variable for the List[HtmlTag].
Good enough. The code below does just that - it turns List[Either[Error, HtmlTag]] into an
Either[Error, List[HtmlTag]]:

MainJS.scala, f48f9c

31 filesViews <- files.map(view)
32 .foldLeft[Either[ClientError , List[HtmlTag]]](Right(Nil)) {
33 (listOrError , nextOrError) => for {
34 list <- listOrError
35 next <- nextOrError
36 } yield list :+ next
37 }

14.3.2 Parent
Same thing happens with parent. It is an Option[FileModel] that can be mapped to an
Option[Either[Error, HtmlTag]]. As previously, we are working under Either so we can’t
have that. And, as previously, the next best thing is to swap the two effects - Option and Either:

MainJS.scala, f48f9c

39 maybeParentView <- parent.map(view) match {
40 case Some(either) => either.map(Some(_))
41 case None => Right(None)
42 }
43 listItems = (maybeParentView ++ filesViews).map { f => li(f)

}. toList

Then it is straightforward to construct a HTML list and return it under the Either monad.

https://github.com/functortech/functional-streamer/blob/f48f9c/js/src/main/scala/functionalstreamer/MainJS.scala
https://github.com/functortech/functional-streamer/commit/f48f9c
https://github.com/functortech/functional-streamer/blob/f48f9c/js/src/main/scala/functionalstreamer/MainJS.scala
https://github.com/functortech/functional-streamer/commit/f48f9c

15. Applicative

M Combine pure, effectful independent computations. As opposed to Monad, that is used to combine
dependent computations.

C 855922

15.1 Motivation

15.1.1 Concrete
Obviously the code from the previous chapter is horrible. Aside from looking bad, the error
reporting is not satisfactory. We are working from a monadic flow based on for (sugar for
flatMap). In case of Either, flatMap terminates at first Left encountered. Meaning if there are
several view errors, only one error at a time will get reported. This is not satisfactory, however,
since by our design views are composed of smaller views that are independent one from another.
And hence, we would like to have errors for all the views at once, not just the first one.

15.1.2 General
Remember how we emphasized that Monads are good to compose dependent, sequential computa-
tions. A => F[B] and B => F[C], where the second function can not be called without the result
of the first one.

In our case, this is not so. The views for each fragment of the page are computed independently:
you do not need the result of rendering one file in a list to render another one.

Only once you have computed the views for all the fragments in an independent manner, you
use them to assemble the total view. Fragment views are independent one from another, the total
view is dependent on all the fragments.

So the monadic solution we have is suboptimal here, since it solves a different problem and
places an unnecessary constraint (dependency one on another) on our fragment views.

15.2 Solution

15.2.1 Applicative
Applicative is a fancy name for a type class that allows to zip several higher-kinded types. Given a:
F[A] and b: F[B], you can produce ab: F[(A, B)] out of them, as follows:.

https://github.com/functortech/functional-streamer/commit/855922

76 Chapter 15. Applicative

1 val c: F[(A, B)] = (a |@| b).tupled

You can afterwards map this tuple to compute something based on the combined result of a and
b.

a and b are computed independently. Then you can make another computation depend on their
result via mapping the combined version of the two.

15.2.2 Technical stuff
There’s a bit more going on under the hood:

• Technically, it is Cartesian type class that builds tuples. Cartesian is defined by def
product[A, B](fa: F[A], fb: F[B]): F[(A, B)]. However, how do you build a 3-
tuple of based on that definition? So clearly Cartesian on its own is a bit weak. The
companion object of it defines the logic to construct n-ary tuples, but only in presence of
some other type class, Invariant.

• Applicative is a more powerful version of Cartesian. Defined by def ap[A, B](ff:
F[(A) => B])(fa: F[A]): F[B] and def pure[A](x: A): F[A], not only can it con-
fuse people with the purpose of these two methods, but also use the higher level of abstractions
gained by them to produce higher-arity tuples. If you are interested, the best way to see
how it is done is to try doing that on your own, say for an Option. First try constructing a
3-typle from three Options via bare product (and only via it, you are not allowed to use
map or flatMap, since they are a part of a Monad), then via ap, and you will see why we
need Applicative.

This is a technical stuff. The important thing about the Applicatives is that they allow to zip
results of independent effect types into a type of tuple. As opposed to a Monad, that is used to
describe sequential computations, where the subsequent computations depend on the results of the
previous ones.

15.3 Intuition

15.3.1 What does it mean to zip F[A] and F[B]?
Say, ((a: F[A]) |@| (b: F[B])).tupled: F[(A, B)].

Think of F as a structure containing the infromation about the effects that happened during the
computation of a and b. Can be an error (Either) an optionality (Option), or a delay (Future).
When we zip two such effects, two things happen:

• Their results are combined into a tuple: A, B => (A, B).
• Their wrapping effect types, F’s, get composed in some way. It is reasonable: we feed two
F’s as an input, but get one F as an output, so we must be combining the two inputs in some
way.

How does it make sense to combine effects? This is individual to the effect in question.
• Option: if at least one of the two is None, the result effect is None.
• Future: a future that waits for all the futures you are zipping to finish, then produces the

tuple with their results.
• Either: if all the Eithers are Right, produce a Right with the tuple. If at least one is
Left, produce Left with a combination of the Left’s payloads.

15.4 Implementation

In our case, we need to map several Eithers to the resulting Either of HTML list, while logging
all the errors in all the Eithers.

15.4 Implementation 77

It turns out that the standard Cats’ implementation of Applicative for Either does the same
thing as the Monad does: if at least one Either is Left, take the first Left encountered.

Fortunately, we can write our own implementation:

typeclasses.scala, 855922

1 package functionalstreamer
2
3 import cats.{ Applicative , Monoid}
4 import cats.syntax.monoid._
5
6 object typeclasses {
7 implicit def applicativeEither[A: Monoid , ?]: Applicative[

Either[A, ?]] = new Applicative[Either[A, ?]] {
8 def pure[B](x: B): Either[A, B] = Right(x)
9

10 def ap[B, C](ff: Either[A, B => C])(fa: Either[A, B]):
scala.util.Either[A, C] = (ff, fa) match {

11 case (Right(f), Right(b)) => Right(f(b))
12 case (Left (a), Right(b)) => Left(a)
13 case (Right(b), Left (a)) => Left(a)
14 case (Left(a1), Left(a2)) => Left(a1 |+| a2)
15 }
16 }
17 }

First, some clarifications:
• implicit def applicativeEither[A: Monoid, ?] is a typo. Should be implicit
def applicativeEither[A: Monoid].

• ? is a syntax that becomes available due to the Kind projector12 plugin. F[A, ?] is the same
as type FA[X] = F[A, X]; FA. That is, when we need to partially specify some holes in
the type in question.

• A: Monoid syntax means that A should have a Monoid type class to it. implicit def
applicativeEither[A: Monoid] translates directly to implicit def applicativeEither[A](implicit
somerandomname: Monoid[A]).

• A Monoid is a type class. It is defined by def combine(x: A, y: A): A and def empty:
A. So Monoid[A] is just a fancy way to say that you can combine two As in some way and
have a default value of A. For example, one implementation of Monoid[Int] can combine
two Ints by adding them, and an empty of Int is 0.

Applicative is defined on some higher-kinded type F[_]. It means you can not define
Applicative[Int] (because Int does not have any holes in its type definition), but you can define
an Applicaive[Option] (since Option[A] has one hole - A). An intuition is that Applicative
works on structures, not individual types.

Applicative is defined on F[_] and not F[A], because the holes of F are known on the level
of def ap[A, B](ff: F[(A) => B])(fa: F[A]): F[B]. It is reasonable: would be weird
if we could zip Option[Int] with Option[String], but not some arbitrary Option[A] and
Option[B] - given how easily we can create a tuple of (A, B) from any A and B, and the fact that
the structure - Option - is the same in both cases.

In other words, we need polymorphism in ap.

1GitHub: https://github.com/non/kind-projector
2More information: http://underscore.io/blog/posts/2016/12/05/type-lambdas.html

https://github.com/functortech/functional-streamer/blob/855922/shared/src/main/scala/functionalstreamer/typeclasses.scala
https://github.com/functortech/functional-streamer/commit/855922
https://github.com/non/kind-projector
http://underscore.io/blog/posts/2016/12/05/type-lambdas.html

78 Chapter 15. Applicative

This is why we need the ? syntax: Applicative needs F[_], but Either[_, _] has two
holes. So we need to partially apply that type definition to some arbitrary type A on the left, and
specify the other hole with ?. In other words, we need to specify which hole we are defining the
Applicative for.

15.4.1 Inside ap
ap is defined as:

1 def ap[A, B](ff: F[(A) => B])(fa: F[A]): F[B]

In case of zipping F[A] with F[B], you use A in a computation that produces F[(A, B)]. In
case of ap, you use A in an arbitrary computation A => B. So essentially it is similar to zipping,
just more powerful.

We argued above that zipping two effect types involves zipping their result types into a tuple
and combining the effect structures themselves. In case of ap, we need to do the same thing, except
that we need to combine A => B and A not by producing a tuple but by applying the function to the
value. It is equally easy to do, so does not change the big picture.

How do we compose Either effects? If both of them are Right, compose their results. If at
least one is Left, we need to produce Left with the combination of all the Left results.

This is where Monoid comes into play. It allows to combine the two As, whichever they are, as
long as we know that a Monoid is defined for them.

This is a nice polymorphism similar to the Java interface one. In Java style, you would probably
define an interface (say Combinable) and use it in place of A: F[Combinable]. Except that you
can not inject interfaces into existing classes, but you can do so with the type class technique.

15.4.2 Application
With that type class in place (don’t forget to import it!) we can combine the directory contents view
and the parent button view via applicatives:

MainJS.scala, 855922
32 case DirContentsResp(files , parent: Option[FileModel]) =>
33 val filesViewsEither = files.map(view)
34 .foldLeft[Either[ClientError , List[HtmlTag]]](Right(Nil))

{
35 (listOrError , nextOrError) => for {
36 list <- listOrError
37 next <- nextOrError
38 } yield list :+ next
39 }
40
41 val maybeParentViewEither = parent.map(view) match {
42 case Some(either) => either.map(Some(_))
43 case None => Right(None)
44 }
45
46 (filesViewsEither |@| maybeParentViewEither).map { (

filesViews , maybeParentView) =>
47 val listItems = (maybeParentView ++ filesViews).map { f =>

li(f) }. toList
48 ul(listItems)
49 }

https://github.com/functortech/functional-streamer/blob/855922/js/src/main/scala/functionalstreamer/MainJS.scala
https://github.com/functortech/functional-streamer/commit/855922

15.5 Conclusion 79

We have replaced the monadic flow, for, with |@|. Then we mapped the two Either’s results
to get a combined result under Either.

15.5 Conclusion
Monads are needed to compose sequential, dependent computations: F[A] => F[B] => F[C] =>
F[D].

Applicatives are needed to combine independent computations:
(F[A], F[B], F[C]) => F[(A, B, C)].
Notice how in the Monad case, every subsequent F can not be computed without the previous

F. In the Applicative case, all the F’s are computed independently (more precisely, we do not
describe how to compute them; they are already computed) and can be passed in a single input
block.

16. Traverse

M Combine collections of pure, effectful independent computations. An Applicative generalized to
collections.

C 855922 to 5d29ac

16.1 Motivation

We have combined two Either into an Either of tuple. But in the same code, we also combine a
List of Either into an Either of a List. A List is just a large tuple if you think about it, so if
we can build one, we can probably build the other.

16.2 Solution

For this purposes, we have the Traverse type class. This is how its traversemethod of Traverse[F[_]]
is defined:

1 def traverse[G[_], A, B](fa: F[A])(f: (A) => G[B])(implicit
arg0: Applicative[G]): G[F[B]]

More confusing signatures!
Here is some intuition:
• F[A] is a structure of some kind. A collection, like a List[A].
• G[B] is an effect of some kind. Like Either[Error, B] - a result of an error-prone

computation.
• A => G[B] is the error-prone computation in question. For example, view: Any => Either[Error,
HtmlTag] runs on Any to compute a HTML view of that Any, but may fail with an error - for
example, when view is not defined for that input.

If you map F[A] with A => G[B], you will get F[G[B]] - a collection of values together with
the data on the side effects they were computed with. However, it makes more sense to have a
collection of pure values with the combined data on how all of the computations went. All the data
in one structure.

if you can combine effects, you can achieve that. Then, the collection of values under a separate
effect each turns into a collection of values under a single combined effect.

In our case, a List[Either[Error, HtmlTag]] becomes an Either[Error, List[HtmlTag]].

https://github.com/functortech/functional-streamer/compare/855922~1...5d29ac

82 Chapter 16. Traverse

16.3 Implementation
Here is how to do that with traverse:

MainJS.scala, 5d29ac

33 case DirContentsResp(files , parent: Option[FileModel]) =>
34 (files.traverse(view) |@| parent.traverse(view)).map { (

filesViews , maybeParentView) =>
35 ul((maybeParentView ++ filesViews).map { f => li(f) }.

toList) }

17 lines got reduced to just 2 - is that not beautiful?

https://github.com/functortech/functional-streamer/blob/5d29ac/js/src/main/scala/functionalstreamer/MainJS.scala
https://github.com/functortech/functional-streamer/commit/5d29ac

17. Browsing the Videos

M Technical: Implementing the video browsing capability

C 784c4b to 89b44e

IMPORTANT: 784c4b introduces a hard-to-track bug specific to Circe. If you checkout that
commit and do a clean compile (that is sbt all:clean and then sbt compile), you’ll get a
cryptically sounding compile time error. However, if you do incremental compilation (that is you
already have the previous commit compiled, there is a chance that you will not get the error. This
error is due to the fact that Circe heavily employs type-level programming and macros to do its job,
and they are error prone. In other words, Circe’s decode method messes up the compilation. This
kind of errors is inevitable in cutting-edge libraries, and chances are that by the time you will be
reading this book there is already a newer version of Circe where this bug is fixed.

The cure for the bug is to insert a FileType.Parent statement (yes, you got it right, a single
line that only mentions that singleton object) at the top of the MainJVM object. The trick is to have
all the subclasses of whatever trait you are decoding with decode mentioned prior to the decode
call. This unfortunate bug will be fixed in two commits, in d0eabe.

Now that we have the navigation through the file system, let us implement the ability to watch
individual video files.

Long story short, we do that via detecting video files by extensions and making them clickable.
On click, we send an Ajax request to the server requesting the URL of the video stream of that file.
When this URL arrives, we use HTML5 video tag to display the video.

All this is done the same way the directory retrieval works. If you are interested in details, you
can have a look at the commits: 784c4b.

One thing deserves our attention though. Many directories contain multiple video files. And
it is convenient to have the “Previous” and “Next” buttons to navigate to neighboring files from
a video file view. So we include the information about the neighbors on the server side in the
response:

https://github.com/functortech/functional-streamer/compare/784c4b~1...89b44e
https://github.com/functortech/functional-streamer/commit/784c4b
https://github.com/functortech/functional-streamer/commit/d0eabe
https://github.com/functortech/functional-streamer/commit/784c4b

84 Chapter 17. Browsing the Videos

MainJVM.scala, 784c4b

97 case VideoReq(path) =>
98 for {
99 parent <- path.file.parentModel.toEither

100 maybePrevious <- path.file.leftNeighborOfType (Set(
FileType.Video)).map(_.map(_.toModel))

101 maybeNext <- path.file.rightNeighborOfType(Set(
FileType.Video)).map(_.map(_.toModel))

102 streamPath = s"/video/$path"
103 } yield VideoResp(path.file.getName , streamPath , parent ,

maybePrevious , maybeNext)

leftNeighborOfType and rightNeighborOfType look for the first file of a given type to the
left and right of the target file respectively. You may have already spotted something weird about
them: we end their lines with .map(_.map(_.toModel)), which is confusing.

In the next chapter, we will see what exactly the problem here is and how to solve it.

https://github.com/functortech/functional-streamer/blob/784c4b/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/784c4b

18. Monad Transformers

M Diversity in effects: you may have not only F[_], but also G[_]. Monad transformers are needed to
stack them - F[G[_]] - painlessly.

C 784c4b to 14b95b

18.1 Motivation

MainJVM.scala, 89b44e

49 def leftNeighbor = neighbor(_ => true) { case f :: ‘file ‘ ::
Nil => f }

50 def rightNeighbor = neighbor(_ => true) { case ‘file ‘ :: f ::
Nil => f }

MainJVM.scala, 89b44e

58 private[this] def neighbor(filter: File => Boolean)(predicate:
PartialFunction[List[File], File]): Either[Throwable ,

Option[File]] =
59 parent.traverse(_.contents).map { mCts: Option[List[File]] =

>
60 mCts.flatMap(_.filter(filter).sliding(2, 1).collectFirst(

predicate))
61 }

These three methods are defined in the FileAPI rich wrapper that injects some convenience
methods into File.

The left and right methods are both defined in terms of the neighbor method. The
neighbor method and does the following:

• Looks ugly.
• Obtains the parent File of the file we are injecting the methods into.
• Obtains the contents of the parent.
• Filters them by a given predicate (used to take into account only certain extensions; if you are

watching a video, you do not want to get a file that is not supported when you press Next).

https://github.com/functortech/functional-streamer/compare/784c4b~1...14b95b
https://github.com/functortech/functional-streamer/blob/89b44e/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/89b44e
https://github.com/functortech/functional-streamer/blob/89b44e/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/89b44e

86 Chapter 18. Monad Transformers

• Runs sliding(2, 1) on them to get a sliding window of size 2 on this collection. A window
of such a size is enough to determine whether two files are neighbors.

• Uses collectFirst to locate a window with the current file and its required neighbor (left
or right). collectFirst returns an Option, so a neighbor might not exist.

Up until now whenever we’ve been working with monads, we were working with a single
monad type: Either. neighbor is so ugly, because it operates on more than one effect:

• parent returns an Option[File]
• contents needed to obtain the contents of the parent returns Either[Throwable, List[File]]
• collectFirst returns again an Option[File]
A naive way to go would be as follows:

1 parent.map { p: Option[File] =>
2 p.contents.map { fs: Either[Throwable , List[File]] =>
3 fs.filter(filter).sliding(2, 1).collectFirst(predicate)
4 }
5 }

This however returns Option[Either[Throwable, Option[File]]]. Very confusing, but
it should be more clear if you apply the following intuition:

• Higher kinded types, such as Option and Either, store effects a function produces.
• In a situation where you have two effects nested, say F[G[A]], you can read it as “G after F,

with the result of A”.
Hence, Option[Either[Throwable, Option[File]]] can be described as File, the com-

putation of which has effects of optionality (maybe there is no file after all?), possibly producing an
error (say, no access rights to the file system), optionality (again!).

Now we feel two forces:
• How can we have two optionality effects? They would be better off merged into one.
• Our entire application works with monadic flows under Either monad, but neighbor returns

an Option. We will not be able to integrate it in our monadic flows this way.

18.2 Solution

18.2.1 Hack
One solution may be to:

• Swap the first two effects, Option and Either, with traverse. We will get Either[Throwable,
Option[Option[File]]].

• Use flatMap instead of map to flatten the second option: Either[Throwable, Option[File]].
This is what the code above does. But it is still ugly.

18.2.2 Problem in-depth
What we witnessed above is a method with nested effects. It emerged as a result of composition of
two other methods, each of which produce different effects.

In functional programming we denote a function with effects as A => F[B]. We have many
such functions due to modularisation. Also it is easy to see that effects can be different. Since the
final application is the result of composition of these functions, hitting the problem of different
stacked effects, F[G[_]], was inevitable.

We have already seen the it is possible to get to the underlying result A via nesting map. However,
we have also seen how map produces duplicate effects: if you have A => F[B], then B => G[C],
then C => F[D] and try to compose them with a map, you will get F[G[F[D]]] as an output. If
not for G, the second F would have been merged with the first one with a flatMap. In general, you

18.3 Implementation 87

don’t want two different structures F to contain two different aspects of the same effect - you want
to merge this data into a single F.

We know how to work with single effects. How do we work with composed effects?

18.2.3 Monad Transformers
The solution is to treat F[G[A]] as a single effect, a single monad. Then, a flatMap on such a
monster would work directly on A, as opposed to G[A]. By definition, this flatMap should also
return F[G[B]].

When you want to treat stacked monads as a single monad, you want Monad Tranformers.
These are monads built with stackability in mind. Here is an example of a monad transformer for
an Option defined by Cats:

1 final case class OptionT[F[_], A](value: F[Option[A]])

Notice the following things about them:
• They usually are named after the monad they allow stacking upon, plus the letter T at the end.
• They usually accept an extra type parameter: F[_] in this case. It is specified by the

programmer and denotes the type we are stacking on top of this monad.
You can also get a hint of what it really is: value: F[Option[A]] means that it is just an

Option wrapped in F. So in our case, we may want to use Either[Throwable, ?] (remember,
we need one hole but have two!) as F to get value: Either[Throwable, Option[A]].

The benefit of OptionT is that it has a Monad instance defined for it in the companion object:

1 implicit def catsDataMonadForOptionT[F[_]](implicit F0: Monad[
F]): Monad[OptionT[F, ?]]

So, it is a monad that works on the second type parameter of OptionT - which is A in
F[Option[A]]! Precisely what we need to use monadic flow on stacked effects.

18.2.4 Lifting to monad transformers
A word of caution: flatMap takes a function of type A => OptionT[F, B], virtually A =>
F[Option[B]].

F[Option[A]] is contained in OptionT[F, A] and is virtually the same as it, but not com-
pletely. You can not assign F[Option[A]] to a variable of type OptionT[F, A]. So, before using
it, first you need to create OptionT out of it.

Also, if you have A => F[B] or A => Option[B], you need to lift their result types to
OptionT[F, B]. This other effect is either F[Option[A]], or Option[A], or F[A].

Lifting F[Option[A]] is straightforward, you just need to pass it to OptionT case class
constructor.

The two other cases have separate methods in the OptionT companion:
• fromOption - lifts Option[A] to OptionT[F, A].
• liftF - lifts F[A] to OptionT[F, A].

18.3 Implementation

With this, let us simplify our neighbor code.
First, let us import the lift functions:

MainJVM.scala, 14b95b

20 import cats.data.OptionT , OptionT .{ fromOption => liftOpt ,
liftF}

https://github.com/functortech/functional-streamer/blob/14b95b/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/14b95b

88 Chapter 18. Monad Transformers

Next, we define the F effect type for convenience:

MainJVM.scala, 14b95b

25 type Error[A] = Either[Throwable , A]

Error would otherwise be expressed as Either[Throwable, ?], which is more verbose.
Finally, let us apply use the monad transformers and the monadic flow:

MainJVM.scala, 14b95b

25 private[this] def neighbor(filter: File => Boolean)(predicate:
PartialFunction[List[File], File]): OptionT[Error , File] =

26 for {
27 p <- liftOpt[Error](parent)
28 contents <- liftF [Error , List[File]](p.contents)
29 neighbour <- liftOpt[Error](contents.filter(filter).

sliding(2, 1).collectFirst(predicate))
30 } yield neighbour

Also, note how we avoid nested maps in the request handler:

MainJVM.scala, 14b95b, @@ -97,8 +102,8 @@

97 case VideoReq(path) =>
98 for {
99 parent <- path.file.parentModel.toEither

100 - maybePrevious <- path.file.leftNeighborOfType (Set(
FileType.Video)).map(_.map(_.toModel))

101 - maybeNext <- path.file.rightNeighborOfType(Set(
FileType.Video)).map(_.map(_.toModel))

102 + maybePrevious <- path.file.leftNeighborOfType (Set(
FileType.Video)).map(_.toModel).value

103 + maybeNext <- path.file.rightNeighborOfType(Set(
FileType.Video)).map(_.toModel).value

104 streamPath = s"/video/$path"
105 } yield VideoResp(path.file.getName , streamPath , parent ,

maybePrevious , maybeNext)

https://github.com/functortech/functional-streamer/blob/14b95b/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/14b95b
https://github.com/functortech/functional-streamer/blob/14b95b/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/14b95b
https://github.com/functortech/functional-streamer/blob/14b95b/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/14b95b

19. Streaming the Videos

M Technical: Implementing the video streaming capability

C e79da9

Finally, we can implement the video streaming as required by HTML5 video player. It involves
being able to handle Range request headers and respond with corresponding byte ranges from the
video file. We implement that as yet another case clause in the server request handler. At a glance,
the implementation looks as follows:

MainJVM.scala, e79da9

109 case e @ GET -> videoPath(path) =>
110 (for {
111 file <- Some(new URLCodec ().decode(path).file).filter

(_.exists).toEither
112 available <- file.size
113 range <- e.getRequestHeaders.get("Range").asScala.head

.rangeHeaderWithCeiling(available)
114 (from , to) = range
115 length = to - from + 1
116 } yield Response(
117 payload = file.stream
118 , contentType = video.mp4
119 , responseCode = 206
120 , headers = Map(
121 "Accept -Ranges" -> "bytes"
122 , "Content -Range" -> s"bytes $from -$to/$available")
123 , writeMethod = Some { (is, os) => IOUtils.copyLarge(is,

os, from , length) }
124)
125)
126 .leftMap { e => Response(s"Error occurred: ${e.toString}".

stream , responseCode = 400) }
127 .merge

https://github.com/functortech/functional-streamer/commit/e79da9
https://github.com/functortech/functional-streamer/blob/e79da9/jvm/src/main/scala/functionalstreamer/MainJVM.scala
https://github.com/functortech/functional-streamer/commit/e79da9

90 Chapter 19. Streaming the Videos

There are quite a bit of other technical details which we will not be focusing on.
Probably the most interesting detail to note is that with the streaming, we are starting to feel the

force of our server being synchronous. It responds to requests from a single thread, so if response
involves some heavy operation (such as writing a chunk of a video file), other requests will have to
wait a long time.

Due to the fact that we are using the Onion architecture and hence the response logic is
concentrated in one place, it is easy to make it multithreaded by wrapping the entire thing in
Future:

ServerAPI.scala, e79da9, @@ -14,20 +17,24 @@

14 def createServer(port: Int)(handler: PartialHandler ,
errorHandler: TotalHandler = defaultErrorHandler):
HttpServer = {

15 val server = HttpServer.create(new InetSocketAddress(
port), 0)

16
17 - server.createContext ("/", { e: HttpExchange =>
18 - val Response(payloadIsGenerator , contentType ,

responseCode) = handler.applyOrElse(e, errorHandler)
19 + server.createContext ("/", (e: HttpExchange) => Future {
20 + val Response(payloadIsGenerator , contentType ,

responseCode , extraHeaders , writeMethod) = handler.
applyOrElse(e, errorHandler)

Quite a bit of other things got changed there though: Response is now able to accept additional
headers (Accept-Ranges and Content-Range are required to be returned for the stream). Also,
we can now specify an optional writeMethod that describes how to write the InputStream into
the response OutputStream. We need that because the solution for large files is implemented
separately by Apache Commons IO.

https://github.com/functortech/functional-streamer/blob/e79da9/jvm/src/main/scala/functionalstreamer/server/ServerAPI.scala
https://github.com/functortech/functional-streamer/commit/e79da9

20. Afterword

It is my hope that this book gave you a good idea of why functional programming is a thing and
how it may be useful in practice. If you really want to learn to apply the concepts discussed here
in practice, there is only one way to do so. Practice. No amount of theory and observation will
develop the necessary skill and intuition.

So, what further steps will it be a good idea for you to take?
• Pick up a project where you can afford making mistakes and having large delays.
• Resolve to use only the functional style in this project. This means, no mutations and no side

effects, at least not in the business logic.
• Stick to this resolution. You will encounter problems with time. Look for the solutions.

With each problem you will solve, you will gain more and more experience in functional
programming.

• Where to look for the solutions? Probably the fastest way is to ask on Gitter1 of Cats (or
whatever other technique-based library you are using).

I wish you fun and exciting journey into the functional world, and remember: Practice makes
perfect!

1https://gitter.im/typelevel/cats

https://gitter.im/typelevel/cats

	1 Preface
	1.1 Why this book was written
	1.2 Structure
	1.3 Conventions
	1.3.1 Remarks
	1.3.2 Code Listings

	1.4 Obtaining and working with the sources
	1.5 How to read this book
	1.5.1 Philosophy
	1.5.2 Algorithm

	Part I — Inception
	2 Functional Streamer, the Application
	2.1 Motivation
	2.2 Solution
	2.3 Setting

	3 DSL
	3.1 Motivation
	3.2 Solution
	3.3 Implementation
	3.4 Conclusion

	Part II — Server Side
	4 Implicit Conversions
	4.1 Refactoring: Modularisation
	4.2 Motivation
	4.3 Solution
	4.4 Implementation
	4.5 Conclusion

	5 Rich Wrappers
	5.1 Motivation
	5.2 Solution
	5.3 Implementation
	5.4 Conclusion

	6 Refactoring: Error Handling
	6.1 Responding with Strings
	6.2 Error Handling

	7 Purity. Functional Onion Architecture.
	7.1 Motivation
	7.2 Solution
	7.3 Implementation

	8 Type Classes
	8.1 Motivation
	8.2 Solution
	8.3 Implementation
	8.4 Implicit Scope
	8.5 Conclusion

	Part III — Client Side
	9 Ajax with Circe
	9.1 Protocol
	9.2 Client side
	9.3 Server side

	10 Effect Types
	10.1 Motivation
	10.2 Intuition
	10.3 Conclusion

	11 Monads
	11.1 Motivation
	11.2 Solution
	11.3 Intuition
	11.4 Implementation

	12 Cats
	12.1 Motivation
	12.2 Solution

	Part IV — Video Streaming
	13 More Onions
	14 Browsing the Directories
	14.1 Basics
	14.2 Client Side
	14.3 Directory Rendering

	15 Applicative
	15.1 Motivation
	15.2 Solution
	15.3 Intuition
	15.4 Implementation
	15.5 Conclusion

	16 Traverse
	16.1 Motivation
	16.2 Solution
	16.3 Implementation

	17 Browsing the Videos
	18 Monad Transformers
	18.1 Motivation
	18.2 Solution
	18.3 Implementation

	19 Streaming the Videos
	20 Afterword
	Index

